金字塔卷积:Pyramidal Convolution
论文地址:https://arxiv.org/pdf/2006.11538.pdf
github:https://github.com/iduta/pyconv
作者认为,当前CNN主要存在两个不足:(1)实际的感受野不足;(2)在下采样中,很多的细节信息会丢失。

从图中可以看出,有的物体尺寸较大(建筑、沙发),有的物体尺寸较小(行人,书本)。这种尺寸的变化是标准卷积级经捕获的。为此,作者提出了金字塔卷积(Pyramid Convolution, PyConv),包含不同尺度的卷积核,可以提取多尺度信息,在多个任务上均取得了较好的性能

PyConv 的示意如图所示,直观来看,就是从上往下卷积核的大小依次减小,同时,在通道维度上,通道的数目依次增加。最后将得到的 feature map 拼接起来。

在图像分类任务中的 PyConv 示意所图所示,首先是9X9的卷积,16个卷积核,分为16组,因此生成16X16=256个 feature map;然后是7X7的卷积,16个卷积核,分为8组,因此生成16X8=128个 feature map;接着是5X5的卷积,16个卷积核,分为4组,因此生成16X4=64个 feature map;最后是3X3的卷积,16个卷积核,只有1组,因此生成16X1=16个 feature map。然后,会用1X1的卷积来使输出的维度都为 256。
备汪:关于分组卷积,网上有一个比较形象的图示。对于普通卷积,如果输入的 feature map 尺寸为CHW, 卷积核的数量为N,每个卷积核的尺寸为CxKxK,那么输出的 feature map 尺寸为 CHN,总的参数量为:NxCxKxK 。
如果进行分组卷积,假定要分成 G 组,每组输入的 feature map 数量为 \(\frac{C}{G}\),每组输出的 feature map 数量为 \(\frac{N}{G}\),每个卷积核的尺寸为\(\frac{C}{G}\times K\times K\), 每组的卷积核数量为 \(\frac{N}{G}\),卷积核只与同组的输入进行卷积,则总的参数量为 \(N\times \frac{C}{G} \times K \times K\),则总的参数量减少为以前的 \(\frac{1}{G}\)。
当分组数量等于输入map数量,输出map数量也等于输入map的数量,即 G=N=C,每个卷积核尺寸为\(1\times K \times K\)时,就成了 Depthwise convolution。

金字塔卷积 PyConv,通过集成不同尺度的卷积核,提升了多个视觉任务的性能,同时,该模块是一种“即插即用”的模块,可以较好的嵌入不同的网络架构中。
金字塔卷积:Pyramidal Convolution的更多相关文章
- 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (二)
本文属于图神经网络的系列文章,文章目录如下: 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一) 从图(Graph)到图卷积(Graph Convolutio ...
- 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一)
本文属于图神经网络的系列文章,文章目录如下: 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一) 从图(Graph)到图卷积(Graph Convolutio ...
- 卷积(convolution)与相关(correlation)(matlab 实现)
1. 卷积(convolution) 输出 y(n) 是作为在 x(k) 和 h(n−k)(反转和移位)重叠之下的样本和求出的. 考虑下面两个序列: x(n)=[3,11,7,0,−1,4,2],−3 ...
- 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (三)
本文属于图神经网络的系列文章,文章目录如下: 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一) 从图(Graph)到图卷积(Graph Convolutio ...
- 【论文笔记】Pyramidal Convolution: Rethinking Convolutional Neural Networks for Visual Recognition
地址:https://arxiv.org/pdf/2006.11538.pdf github:https://github.com/iduta/pyconv 目前的卷积神经网络普遍使用3×3的卷积神经 ...
- 转置卷积Transposed Convolution
转置卷积Transposed Convolution 我们为卷积神经网络引入的层,包括卷积层和池层,通常会减小输入的宽度和高度,或者保持不变.然而,语义分割和生成对抗网络等应用程序需要预测每个像素的值 ...
- 信号处理——卷积(convolution)的实现
作者:桂. 时间:2017-03-07 22:33:37 链接:http://www.cnblogs.com/xingshansi/p/6517301.html 前言 信号时域.频域对应关系,及其D ...
- 各种卷积类型Convolution
从最开始的卷积层,发展至今,卷积已不再是当初的卷积,而是一个研究方向.在反卷积这篇博客中,介绍了一些常见的卷积的关系,本篇博客就是要梳理这些有趣的卷积结构. 阅读本篇博客之前,建议将这篇博客结合在一起 ...
- [翻译] 扩张卷积 (Dilated Convolution)
英文原文: Dilated Convolution 简单来说,扩张卷积只是运用卷积到一个指定间隔的输入.按照这个定义,给定我们的输入是一个2维图片,扩张率 k=1 是通常的卷积,k=2 的意思是每个输 ...
随机推荐
- day01---学习Mysql高级性能优化1
Mysql逻辑架构图
- Day12-微信小程序实战-交友小程序-优化“附近的人”页面与serach组件的布局和样式以及搜索历史记录和本地缓存*内附代码)
回顾/:我们已经实现了显示附近的人的功能了,可以多个人看到附近的人页面了 但是还是要进行优化有几个问题:1.我们用户选择了其他的自定义头像之后,在首页可以看到头像的变化,但是在附近的人中头像会变成报错 ...
- python fabric安装
1 安装epel wget -O /etc/yum.repos.d/epel.repo http://mirrors.aliyun.com/repo/epel-7.repo 2 安装pip yum i ...
- 宝贝,来,满足你,二哥告诉你学 Java 应该买什么书?
(这次的标题是不是有点皮,对模仿好朋友 guide 哥的,我也要皮一皮) 高尔基说过,对吧?宝贝们,"书籍是人类进步的阶梯",不管学什么,买几本心仪的书读一读,帮助还是非常大的.尽 ...
- TreeMap实现
- 前端日常工作中常用开发小技巧 ---JavaScript
1.格式化金钱值 const ThousandNum = num => num.toString().replace(/\B(?=(\d{3})+(?!\d))/g, "," ...
- gitlab、github账户密码修改后,记得修改本地账户的git凭据
忘记了修改本地git账户的凭据,导致推送失败,后来才发现是本地的凭据没修改.
- Python3笔记009 - 2.6 输入和输出
第2章 python语言基础 python语法特点 保留字与标识符 变量 数据类型 运算符 输入和输出 2.6 输入和输出 1.input()函数 name = input("请输入姓名:& ...
- HashMap等集合初始化时应制定初始化大小
阿里巴巴开发规范中,推荐用户在初始化HashMap时,应指定集合初始值大小. 一.原因 这个不用多想,肯定是效率问题,那为什么会造成效率问题呢? 当我们new一个HashMap没有对其容量进行初始化的 ...
- 关于echarts中的饼状图的label文字显示过长的问题
label: { normal: { fontSize: 14, formatter(v) { let text = v.name let count = text.indexOf('¥') cons ...