题目:树网的核

网址:https://www.luogu.com.cn/problem/P1099

题目描述

设 T=(V,E,W)T=(V,E,W) 是一个无圈且连通的无向图(也称为无根树),每条边到有正整数的权,我们称 TT 为树网(treenetwork),其中 VV,EE 分别表示结点与边的集合,WW 表示各边长度的集合,并设 TT 有 nn 个结点。

路径:树网中任何两结点 aa,bb 都存在唯一的一条简单路径,用 d(a, b)d(a,b) 表示以 a, ba,b 为端点的路径的长度,它是该路径上各边长度之和。我们称 d(a, b)d(a,b) 为 a, ba,b 两结点间的距离。

D(v, P)=\min{d(v, u)}D(v,P)=min{d(v,u)}, uu 为路径 PP 上的结点。

树网的直径:树网中最长的路径成为树网的直径。对于给定的树网 TT,直径不一定是唯一的,但可以证明:各直径的中点(不一定恰好是某个结点,可能在某条边的内部)是唯一的,我们称该点为树网的中心。

偏心距 \mathrm{ECC}(F)ECC(F):树网 TT 中距路径 FF 最远的结点到路径 FF 的距离,即

\mathrm{ECC}(F)=\max{d(v, F),v \in V}ECC(F)=max{d(v,F),v∈V}

任务:对于给定的树网 \(T=(V, E, W)\) 和非负整数 \(s\),求一个路径 \(F\),他是某直径上的一段路径(该路径两端均为树网中的结点),其长度不超过 \(s\)(可以等于 \(s\)),使偏心距 \(ECC(F)\) 最小。我们称这个路径为树网 \(T=(V, E, W)\) 的核(Core)。必要时,\(F\) 可以退化为某个结点。一般来说,在上述定义下,核不一定只有一个,但最小偏心距是唯一的。

下面的图给出了树网的一个实例。图中,\(A-B\) 与 \(A-C\) 是两条直径,长度均为 \(20\)。点 \(W\) 是树网的中心,\(EF\) 边的长度为 \(5\)。如果指定 \(s=11\),则树网的核为路径\(DEFG\)(也可以取为路径\(DEF\)),偏心距为 \(8\)。如果指定\(s=0\)(或 \(s=1\)、\(s=2\)),则树网的核为结点 \(F\),偏心距为 \(12\)。

输入格式

共 \(n\) 行。

第 \(1\) 行,两个正整数 \(n\) 和 \(s\),中间用一个空格隔开。其中 \(n\) 为树网结点的个数,\(s\) 为树网的核的长度的上界。设结点编号以此为 \(1,2\dots,n\)。

从第 \(2\) 行到第 \(n\) 行,每行给出 \(3\) 个用空格隔开的正整数 \(u, v, w\),依次表示每一条边的两个端点编号和长度。例如,\(2 4 7\) 表示连接结点 \(2\) 与 \(4\) 的边的长度为 \(7\)。

输出格式

一个非负整数,为指定意义下的最小偏心距。

输入输出样例

输入 #1

5 2
1 2 5
2 3 2
2 4 4
2 5 3

输出 #1

5

输入 #2

8 6
1 3 2
2 3 2
3 4 6
4 5 3
4 6 4
4 7 2
7 8 3

输出 #2

5

说明/提示

  • 对于 \(40\%\) 的数据,保证 \(n \le 15\)。
  • 对于 \(70\%\) 的数据,保证 \(n \le 80\)。
  • 对于 \(100\%\) 的数据,保证 \(n \le 300\),\(0\le s\le10^3\),\(1 \leq u, v \leq n\),\(1 \leq w \leq 10^3\)。

C ++ AC代码

总结回顾

参考文献

NOIP2007 树网的核 [提高组]的更多相关文章

  1. [SDOI2011]消防/[NOIP2007] 树网的核

    消防 题目描述 某个国家有n个城市,这n个城市中任意两个都连通且有唯一一条路径,每条连通两个城市的道路的长度为zi(zi<=1000). 这个国家的人对火焰有超越宇宙的热情,所以这个国家最兴旺的 ...

  2. Cogs 97. [NOIP2007] 树网的核 Floyd

    题目: http://cojs.tk/cogs/problem/problem.php?pid=97 97. [NOIP2007] 树网的核 ★☆   输入文件:core.in   输出文件:core ...

  3. NOIP2007 树网的核 && [BZOJ2282][Sdoi2011]消防

    NOIP2007 树网的核 树的直径的最长性是一个很有用的概念,可能对一些题都帮助. 树的直径给定一棵树,树中每条边都有一个权值,树中两点之间的距离定义为连接两点的路径边权之和.树中最远的两个节点之间 ...

  4. noip2007 树网的核

    P1099 树网的核 112通过 221提交 题目提供者该用户不存在 标签动态规划树形结构2007NOIp提高组 难度提高+/省选- 提交该题 讨论 题解 记录   题目描述 设T=(V, E, W) ...

  5. 洛谷1099 [NOIP2007] 树网的核

    链接https://www.luogu.org/problemnew/show/P1099 题目描述 设T=(V,E,W)是一个无圈且连通的无向图(也称为无根树),每条边到有正整数的权,我们称TTT为 ...

  6. noip2007树网的核

    想一下可以发现随便枚举一条直径做就可以了. 核越长越好.于是枚举核的过程可以做到O(n) 然后就是统计答案. 对于每个核最大偏心距肯定是核上面每个点不走核内的点所能走到的最远点的最值. 而且对于核的两 ...

  7. BZOJ2282 SDOI2011消防/NOIP2007树网的核(二分答案+树形dp)

    要求最大值最小容易想到二分答案.首先对每个点求出子树中与其最远的距离是多少,二分答案后就可以标记上一些必须在所选择路径中的点,并且这些点是不应存在祖先关系的.那么如果剩下的点数量>=3,显然该答 ...

  8. [NOIP2007] 提高组 洛谷P1099 树网的核

    题目描述 设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边到有正整数的权,我们称T为树网(treebetwork),其中V,E分别表示结点与边的集合,W表示各边长度的集合,并 ...

  9. 树网的核 2007年NOIP全国联赛提高组(floyed)

    树网的核 2007年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond     题目描述 Description [问题描述]设 T= ...

随机推荐

  1. jmeter接口测试 -- Base64加密(函数助手添加自定义函数)

    图片转码 base64 致谢参考博客: https://www.cnblogs.com/qiaoyeye/p/7218770.html https://www.cnblogs.com/lasdaybg ...

  2. Python 3爬虫、数据清洗与可视化实战PDF高清完整版免费下载|百度云盘

    百度云盘:Python 3爬虫.数据清洗与可视化实战PDF高清完整版免费下载 提取码: 内容简介 <Python 3爬虫.数据清洗与可视化实战>是一本通过实战教初学者学习采集数据.清洗和组 ...

  3. Pycharm远程解释器SFTP开发和调试

    转载:https://blog.csdn.net/ll641058431/article/details/53049453 使用PyCharm进行远程开发和调试 你是否经常要在Windows 7或MA ...

  4. 搭建NFS Server

    搭建NFS Server Kubetrain K8S在线直播培训,内推机会 不满意可无条件退款 现在就去广告 #背景 Kubernetes 对 Pod 进行调度时,以当时集群中各节点的可用资源作为主要 ...

  5. 02_Linux实操篇

    第五章 VI和VIM编辑器 5.1. VI和VIM基本介绍 Vi编辑器是所有Unix及Linux系统下标准的编辑器,它的强大不逊色于任何最新的文本编辑器.由于对Unix及Linux系统的任何版本,Vi ...

  6. 前端网(http://www.qdfuns.com/)不能访问了

    前端网(http://www.qdfuns.com/)不能访问了 之前写的一些知识点也找不到了,有点难受.... 这说明知识点还是放在本地电脑稳一点,多备份,云端时刻在变化... 希望博客园别也用着用 ...

  7. 11-14序列化模块之json、pickle、shelve

    序列化的目的 1.以某种存储形式使自定义对象持久化: 2.将对象从一个地方传递到另一个地方. 3.使程序更具维护性. 序列化--转向一个字符串数据类型序列--及时字符串 何处用到: 数据存储 网络上传 ...

  8. PHP - AJAX 与 MySQL-AJAX 数据库实例

    PHP - AJAX 与 MySQL AJAX 可用来与数据库进行交互式通信. AJAX 数据库实例 下面的实例将演示网页如何通过 AJAX 从数据库读取信息: 本教程使用到的 Websites 表 ...

  9. Skill Virtuoso IC6.1.7 的所有View Type

    https://www.cnblogs.com/yeungchie/ 可以用deGetAllViewTypes()来获取. "graphic" "layout" ...

  10. TCP为什么做三次握手、四次挥手

    TCP 为什么做三次握手.四次挥手? TCP 是为了解决可靠传输出现的.为了实现可靠性,TCP 做了流量控制.拥塞控制,并且在建立.关闭连接前做些机制:三次握手.四次挥手. 三次握手是为了让客户端.服 ...