sklearn: CountVectorize处理及一些使用参数

CountVectorizer是属于常见的特征数值计算类,是一个文本特征提取方法。对于每一个训练文本,它只考虑每种词汇在该训练文本中出现的频率。

CountVectorizer会将文本中的词语转换为词频矩阵,它通过fit_transform函数计算各个词语出现的次数。

CountVectorizer(analyzer='word', binary=False, decode_error='strict',
dtype=<class 'numpy.int64'>, encoding='utf-8', input='content',
lowercase=True, max_df=1.0, max_features=None, min_df=1,
ngram_range=(1, 1), preprocessor=None, stop_words=None,
strip_accents=None, token_pattern='(?u)\\b\\w\\w+\\b',
tokenizer=None, vocabulary=None)

CountVectorizer类的参数很多,分为三个处理步骤:preprocessing、tokenizing、n-grams generation.

一般要设置的参数是:ngram_range,max_df,min_df,max_features,analyzer,stop_words,token_pattern等,具体情况具体分析

  1. ngram_range : 例如ngram_range(min,max),是指将text分成min,min+1,min+2,.........max 个不同的词组。比如 '我 爱 中国' 中ngram_range(1,3)之后可得到'我' '爱' '中国' '我 爱' '爱 中国' 和'我 爱 中国',如果是ngram_range (1,1) 则只能得到单个单词'我' '爱'和'中国'。
  2. max_df:可以设置为范围在[0.0 1.0]的float,也可以设置为没有范围限制的int,默认为1.0。 这个参数的作用是作为一个阈值,当构造语料库的关键词集的时候,如果某个词的document frequence大于max_df,这个词不会被当作关键词。如果这个参数是float,则表示词出现的次数与语料库文档数的百分比,如果是int,则表示词出现的次数。如果参数中已经给定了vocabulary,则这个参数无效。
  3. min_df: 类似于max_df,不同之处在于如果某个词的document frequence小于min_df,则这个词不会被当作关键词。
  4. max_features:默认为None,可设为int,对所有关键词的term frequency进行降序排序,只取前max_features个作为关键词集。
  5. analyzer:一般使用默认,可设置为string类型,如’word’, ‘char’, ‘char_wb’,还可设置为callable类型,比如函数是一个callable类型。
  6. stop_words:设置停用词,设为english将使用内置的英语停用词,设为一个list可自定义停用词,设为None不使用停用词,设为None且max_df∈[0.7, 1.0)将自动根据当前的语料库建立停用词表。
  7. token_pattern:过滤规则,表示token的正则表达式,需要设置analyzer == ‘word’,默认的正则表达式选择2个及以上的字母或数字作为token,标点符号默认当作token分隔符,而不会被当作token。
  8. decode_error:默认为strict,遇到不能解码的字符将报UnicodeDecodeError错误,设为ignore将会忽略解码错误,还可以设为replace,作用尚不明确。
  9. binary:默认为False,一个关键词在一篇文档中可能出现n次,如果binary=True,非零的n将全部置为1,这对需要布尔值输入的离散概率模型的有用的。

实例:

from sklearn.feature_extraction.text import CountVectorizer
corpus = ['我 爱 中国 中国','爸爸 妈妈 爱 我','爸爸 妈妈 爱 中国']
# corpus = ['我爱中国','爸爸妈妈爱我','爸爸妈妈爱中国']
vectorizer = CountVectorizer(min_df=1, ngram_range=(1, 1)) ##创建词袋数据结构,里面相应参数设置
features = vectorizer.fit_transform(corpus) #拟合模型,并返回文本矩阵 print("CountVectorizer:")
print(vectorizer.get_feature_names()) #显示所有文本的词汇,列表类型
#词表
#['中国', '妈妈', '爸爸'] print(vectorizer.vocabulary_) #词汇表,字典类型
#key:词,value:对应编号
#{'中国': 0, '爸爸': 2, '妈妈': 1} print(features) #文本矩阵
#第一行 (0, 0) 2 表示为:第0个列表元素,**词典中索引为0的元素**, 词频为2
# (0, 0) 2
# (1, 1) 1
# (1, 2) 1
# (2, 1) 1
# (2, 2) 1
# (2, 0) 1 print(features.toarray()) #.toarray() 是将结果转化为稀疏矩阵
#将结果转化为稀疏矩阵
#[[2 0 0]
# [0 1 1]
# [1 1 1]] print(features.toarray().sum(axis=0)) #统计每个词在所有文档中的词频
#文本中的词频
#[3 2 2]

sklearn: CountVectorize处理及一些使用参数的更多相关文章

  1. SVM的sklearn.svm.SVC实现与类参数

    SVC继承了父类BaseSVC SVC类主要方法: ★__init__() 主要参数: C: float参数 默认值为1.0 错误项的惩罚系数.C越大,即对分错样本的惩罚程度越大,因此在训练样本中准确 ...

  2. SKlearn中分类决策树的重要参数详解

    学习机器学习童鞋们应该都知道决策树是一个非常好用的算法,因为它的运算速度快,准确性高,方便理解,可以处理连续或种类的字段,并且适合高维的数据而被人们喜爱,而Sklearn也是学习Python实现机器学 ...

  3. sklearn.model_selection 的train_test_split方法和参数

    train_test_split是sklearn中用于划分数据集,即将原始数据集划分成测试集和训练集两部分的函数. from sklearn.model_selection import train_ ...

  4. python sklearn PCA源码阅读:参数n_components的设置(设为‘mle’出错的原因)

    在介绍n_components参数之前,首先贴一篇PCA参数详解的文章:http://www.cnblogs.com/akrusher/articles/6442549.html. 按照文章中对于n_ ...

  5. sklearn.svc 参数

    sklearn.svc 参数 sklearn中的SVC函数是基于libsvm实现的,所以在参数设置上有很多相似的地方.(PS: libsvm中的二次规划问题的解决算法是SMO). 对于SVC函数的参数 ...

  6. 使用sklearn做单机特征工程

    目录 1 特征工程是什么?2 数据预处理 2.1 无量纲化 2.1.1 标准化 2.1.2 区间缩放法 2.1.3 标准化与归一化的区别 2.2 对定量特征二值化 2.3 对定性特征哑编码 2.4 缺 ...

  7. 【转】使用sklearn做单机特征工程

    这里是原文 说明:这是我用Markdown编辑的第一篇随笔 目录 1 特征工程是什么? 2 数据预处理 2.1 无量纲化 2.1.1 标准化 2.1.2 区间缩放法 2.1.3 无量纲化与正则化的区别 ...

  8. Python机器学习笔记 使用sklearn做特征工程和数据挖掘

    特征处理是特征工程的核心部分,特征工程是数据分析中最耗时间和精力的一部分工作,它不像算法和模型那样式确定的步骤,更多的是工程上的经验和权衡,因此没有统一的方法,但是sklearn提供了较为完整的特征处 ...

  9. 基于sklearn和keras的数据切分与交叉验证

    在训练深度学习模型的时候,通常将数据集切分为训练集和验证集.Keras提供了两种评估模型性能的方法: 使用自动切分的验证集 使用手动切分的验证集 一.自动切分 在Keras中,可以从数据集中切分出一部 ...

随机推荐

  1. Java集合【4】-- iterable和Iterator的异同分析详解

    目录 一.iterator介绍 二.iterable接口 三.为什么有Iterator还需要Iterable 一.iterator介绍 iterator接口,也是集合大家庭中的一员.和其他的Map和C ...

  2. 蚂蚁上市员工人均一套大 House,阿里程序员身价和这匹配吗?

    作者 | 硬核云顶宫 责编 | 伍杏玲 出品 | CSDN(ID:CSDNnews) 上周,蚂蚁集团迎来IPO,其发行价格将达到68.8元,总市值将突破2万亿元.市场对蚂蚁的成长性有着充分的信心,为了 ...

  3. mqProducer

    producer核心属性:生产者所属组,消息服务器在回查事物状态时会随机选择该组中任何一个生产者发起事务回查请求. createTopicKey:默认topicKey defaultTopicQueu ...

  4. 《我想进大厂》之Spring夺命连环10问

    1.说说Spring 里用到了哪些设计模式? 单例模式:Spring 中的 Bean 默认情况下都是单例的.无需多说. 工厂模式:工厂模式主要是通过 BeanFactory 和 Application ...

  5. ModelSim入门

    verilog设计进阶 时间:2014年5月5日星期一 主要收获: 1. 安装了ModelSim ALTERA 6.4a; 2. 熟悉基本流程,仿真成功: 3. 了解testbench语法基本. 为什 ...

  6. crash安装使用

     cash作为Linux内核调试的工具是必不可少少的一部分,但是他的下载并不是 yum install一下这么简单的,本文就来讲一下如何安装crash进行调试.  首先就是了解Linux的内核版本.这 ...

  7. JZOJ 11.28 提高B组反思

    JZOJ 11.28 提高B组反思 被打崩了呀 下次打提高A去了(逃 T1 刚开始没有读懂题,后来读懂了以后没有思路.没有想到是一个构造题,对同构的性质没有了解清楚,题解也讲的不明不白,懵-- T2 ...

  8. 安装pillow报错处理

    sudo python3 pip install pillow 报错:The headers or library files could not be found for jpeg,... 解决:安 ...

  9. 并发编程实战-ConcurrentHashMap源码解析

    jdk8之前的实现原理 jdk1.7中采用的数据结构是Segment + HashEntry 的方式进行实现.主要的结构如下图: ConcurrentHashMap 并不是将每个方法都在同一个锁上同步 ...

  10. 半夜删你代码队 Day7冲刺

    一.每日站立式会议 1.站立式会议 成员 昨日完成工作 今日计划工作 遇到的困难 陈惠霖 好友界面初步 完善好友界面 无 侯晓龙 帮助他人建立数据库 用户信息界面 无 周楚池 完善管理员界面 用户界面 ...