在文章中,我们将对输入到机器学习模型中的数据集进行预处理。

这里我们将对一个硬币数据集进行预处理,以便以后在监督学习模型中进行训练。在机器学习中预处理数据集通常涉及以下任务:

  1. 清理数据——通过对周围数据的平均值或使用其他策略来填补数据缺失或损坏造成的漏洞。
  2. 规范数据——将数据缩放值标准化到一个标准范围,通常是0到1。具有广泛值范围的数据可能会导致不规范,因此我们将所有数据都放在一个公共范围内。
  3. 一种热编码标签——将数据集中对象的标签或类编码为N维二进制向量,其中N是类的总数。数组元素都被设置为0,除了与对象的类相对应的元素,它被设置为1。这意味着在每个数组中都有一个值为1的元素。
  4. 将输入数据集分为训练集和验证集——训练集被用于训练模型,验证集是用于检查我们的训练结果。

这个例子我们将使用Numpy.NET,它基本上是Python中流行的Numpy库的.NET版本。

Numpy是一个专注于处理矩阵的库。

为了实现我们的数据集处理器,我们在PreProcessing文件夹中创建Utils类和DataSet类。Utils类合并了一个静态Normalize 方法,如下所示:

public class Utils
{
public static NDarray Normalize(string path)
{
var colorMode = Settings.Channels == 3 ? "rgb" : "grayscale";
var img = ImageUtil.LoadImg(path, color_mode: colorMode, target_size: (Settings.ImgWidth, Settings.ImgHeight));
return ImageUtil.ImageToArray(img) / 255;
} }

在这种方法中,我们用给定的颜色模式(RGB或灰度)加载图像,并将其调整为给定的宽度和高度。然后我们返回包含图像的矩阵,每个元素除以255。每个元素除以255是使它们标准化,因为图像中任何像素的值都在0到255之间,所以通过将它们除以255,我们确保了新的范围是0到1,包括255。

我们还在代码中使用了一个Settings类。该类包含用于跨应用程序使用的许多常量。另一个类DataSet,表示我们将要用来训练机器学习模型的数据集。这里我们有以下字段:

  1. _pathToFolder—包含图像的文件夹的路径。
  2. _extList—要考虑的文件扩展名列表。
  3. _labels—_pathToFolder中图像的标签或类。
  4. _objs -图像本身,表示为Numpy.NDarray。
  5. _validationSplit—用于将总图像数划分为验证集和训练集的百分比,在本例中,百分比将定义验证集与总图像数之间的大小。
  6. NumberClasses-数据集中唯一类的总数。
  7. TrainX -训练数据,表示为Numpy.NDarray。
  8. TrainY -训练标签,表示为Numpy.NDarray。
  9. ValidationX—验证数据,表示为Numpy.NDarray。
  10. ValidationY-验证标签,表示为Numpy.NDarray。

这是DataSet类:

public class DataSet
{
private string _pathToFolder;
private string[] _extList;
private List<int> _labels;
private List<NDarray> _objs;
private double _validationSplit;
public int NumberClasses { get; set; }
public NDarray TrainX { get; set; }
public NDarray ValidationX { get; set; }
public NDarray TrainY { get; set; }
public NDarray ValidationY { get; set; } public DataSet(string pathToFolder, string[] extList, int numberClasses, double validationSplit)
{
_pathToFolder = pathToFolder;
_extList = extList;
NumberClasses = numberClasses;
_labels = new List<int>();
_objs = new List<NDarray>();
_validationSplit = validationSplit;
} public void LoadDataSet()
{
// Process the list of files found in the directory.
string[] fileEntries = Directory.GetFiles(_pathToFolder);
foreach (string fileName in fileEntries)
if (IsRequiredExtFile(fileName))
ProcessFile(fileName); MapToClassRange();
GetTrainValidationData();
} private bool IsRequiredExtFile(string fileName)
{
foreach (var ext in _extList)
{
if (fileName.Contains("." + ext))
{
return true;
}
} return false;
} private void MapToClassRange()
{
HashSet<int> uniqueLabels = _labels.ToHashSet();
var uniqueLabelList = uniqueLabels.ToList();
uniqueLabelList.Sort(); _labels = _labels.Select(x => uniqueLabelList.IndexOf(x)).ToList();
} private NDarray OneHotEncoding(List<int> labels)
{
var npLabels = np.array(labels.ToArray()).reshape(-1);
return Util.ToCategorical(npLabels, num_classes: NumberClasses);
} private void ProcessFile(string path)
{
_objs.Add(Utils.Normalize(path));
ProcessLabel(Path.GetFileName(path));
} private void ProcessLabel(string filename)
{
_labels.Add(int.Parse(ExtractClassFromFileName(filename)));
} private string ExtractClassFromFileName(string filename)
{
return filename.Split('_')[0].Replace("class", "");
} private void GetTrainValidationData()
{
var listIndices = Enumerable.Range(0, _labels.Count).ToList();
var toValidate = _objs.Count * _validationSplit;
var random = new Random();
var xValResult = new List<NDarray>();
var yValResult = new List<int>();
var xTrainResult = new List<NDarray>();
var yTrainResult = new List<int>(); // Split validation data
for (var i = 0; i < toValidate; i++)
{
var randomIndex = random.Next(0, listIndices.Count);
var indexVal = listIndices[randomIndex];
xValResult.Add(_objs[indexVal]);
yValResult.Add(_labels[indexVal]);
listIndices.RemoveAt(randomIndex);
} // Split rest (training data)
listIndices.ForEach(indexVal =>
{
xTrainResult.Add(_objs[indexVal]);
yTrainResult.Add(_labels[indexVal]);
}); TrainY = OneHotEncoding(yTrainResult);
ValidationY = OneHotEncoding(yValResult);
TrainX = np.array(xTrainResult);
ValidationX = np.array(xValResult);
}
}

下面是每个方法的说明:

  1. LoadDataSet()——类的主方法,我们调用它来加载_pathToFolder中的数据集。它调用下面列出的其他方法来完成此操作。
  2. IsRequiredExtFile(filename) - 检查给定文件是否包含至少一个应该为该数据集处理的扩展名(在_extList中列出)。
  3. MapToClassRange() -获取数据集中唯一标签的列表。
  4. ProcessFile(path) -使用Utils.Normalize方法对图像进行规格化,并调用ProcessLabel方法。
  5. ProcessLabel(filename)——将ExtractClassFromFileName方法的结果添加为标签。
  6. ExtractClassFromFileName(filename) -从图像的文件名中提取类。
  7. GetTrainValidationData()——将数据集划分为训练子数据集和验证子数据集。

在本系列中,我们将使用https://cvl.tuwien.ac.at/research/cvl-databases/coin-image-dataset/上的硬币图像数据集。

要加载数据集,我们可以在控制台应用程序的主类中包含以下内容:

var numberClasses = 60;
var fileExt = new string[] { ".png" };
var dataSetFilePath = @"C:/Users/arnal/Downloads/coin_dataset";
var dataSet = new PreProcessing.DataSet(dataSetFilePath, fileExt, numberClasses, 0.2);
dataSet.LoadDataSet();

我们的数据现在可以输入到机器学习模型中。下一篇文章将介绍监督机器学习的基础知识,以及训练和验证阶段包括哪些内容。它是为没有AI经验的读者准备的。

欢迎关注我的公众号,如果你有喜欢的外文技术文章,可以通过公众号留言推荐给我。

C#中的深度学习(二):预处理识别硬币的数据集的更多相关文章

  1. 基于深度学习的人脸识别系统(Caffe+OpenCV+Dlib)【二】人脸预处理

    前言 基于深度学习的人脸识别系统,一共用到了5个开源库:OpenCV(计算机视觉库).Caffe(深度学习库).Dlib(机器学习库).libfacedetection(人脸检测库).cudnn(gp ...

  2. CNCC2017中的深度学习与跨媒体智能

    CNCC2017中的深度学习与跨媒体智能 转载请注明作者:梦里茶 目录 机器学习与跨媒体智能 传统方法与深度学习 图像分割 小数据集下的深度学习 语音前沿技术 生成模型 基于贝叶斯的视觉信息编解码 珠 ...

  3. 【OCR技术系列之四】基于深度学习的文字识别(3755个汉字)

    上一篇提到文字数据集的合成,现在我们手头上已经得到了3755个汉字(一级字库)的印刷体图像数据集,我们可以利用它们进行接下来的3755个汉字的识别系统的搭建.用深度学习做文字识别,用的网络当然是CNN ...

  4. 基于深度学习的人脸识别系统(Caffe+OpenCV+Dlib)【一】如何配置caffe属性表

    前言 基于深度学习的人脸识别系统,一共用到了5个开源库:OpenCV(计算机视觉库).Caffe(深度学习库).Dlib(机器学习库).libfacedetection(人脸检测库).cudnn(gp ...

  5. 基于深度学习的人脸识别系统(Caffe+OpenCV+Dlib)【三】VGG网络进行特征提取

    前言 基于深度学习的人脸识别系统,一共用到了5个开源库:OpenCV(计算机视觉库).Caffe(深度学习库).Dlib(机器学习库).libfacedetection(人脸检测库).cudnn(gp ...

  6. 基于深度学习的人脸识别系统系列(Caffe+OpenCV+Dlib)——【四】使用CUBLAS加速计算人脸向量的余弦距离

    前言 基于深度学习的人脸识别系统,一共用到了5个开源库:OpenCV(计算机视觉库).Caffe(深度学习库).Dlib(机器学习库).libfacedetection(人脸检测库).cudnn(gp ...

  7. 【OCR技术系列之四】基于深度学习的文字识别

    上一篇提到文字数据集的合成,现在我们手头上已经得到了3755个汉字(一级字库)的印刷体图像数据集,我们可以利用它们进行接下来的3755个汉字的识别系统的搭建.用深度学习做文字识别,用的网络当然是CNN ...

  8. Deep learning for visual understanding: A review 视觉理解中的深度学习:回顾 之一

    Deep learning for visual understanding: A review 视觉理解中的深度学习:回顾 ABSTRACT: Deep learning algorithms ar ...

  9. C#中的深度学习(一):使用OpenCV识别硬币

    在本系列文章中,我们将使用深度神经网络(DNN)来执行硬币识别.具体来说,我们将训练一个DNN识别图像中的硬币. 在本文中,我们将描述一个OpenCV应用程序,它将检测图像中的硬币.硬币检测是硬币完整 ...

随机推荐

  1. zabbix agent 编译安装

    zabbix 安装包下载地址 https://www.zabbix.com/download 解压好之后进入zabbix目录 执行编译安装 ./configure --prefix=/usr/loca ...

  2. 简单好用的TCP/UDP高并发性能测试工具

    工具下载地址: 链接:https://pan.baidu.com/s/1fJ6Kz-mfFu_RANrgKqYiyA 提取码:0pyf 最近测试智能设备的远程的性能,思路主要是通过UDP对IP和端口发 ...

  3. docker私有云管理平台-----shipyard

    下载所需docker镜像 docker pull rethinkdb docker pull microbox/etcd docker pull shipyard/docker-proxy docke ...

  4. 分析 5种分布式事务方案,还是选了阿里的 Seata(原理 + 实战)

    好长时间没发文了,最近着实是有点忙,当爹的第 43 天,身心疲惫.这又赶上年底,公司冲 KPI 强制技术部加班到十点,晚上孩子隔两三个小时一醒,基本没睡囫囵觉的机会,天天处于迷糊的状态,孩子还时不时起 ...

  5. P6631 [ZJOI2020] 序列

    可以将问题用形象的方式来表述.给定一排点,第 \(i\) 个点有它需要的覆盖次数 \(a_i\).有两种线段,一种能覆盖连续的一些点,称其为连续线段:另一种能覆盖相邻间隔为 \(1\) 的一些点,称其 ...

  6. finalize和clean

    弊端 1.执行的时间不确定,资源释放不能靠这2个方法.Cleaner规范指出:"清除方法在System.exit期间的行为是与实现相关的.不确保清除动作是否会被调用." 2#.如果 ...

  7. 团队 Gitee 实战训练

    这个课程属于 https://edu.cnblogs.com/campus/fzzcxy/2018SE2 这个作业要求在哪里 https://edu.cnblogs.com/campus/fzzcxy ...

  8. DjangoForm表单组件

    Form组件的介绍: 我们之前在HTML页面中利用form表单向后端提交数据时,都会写一些获取用户输入的标签并且用form标签把它们包起来. 与此同时我们在好多场景下都需要对用户的输入做校验,比如校验 ...

  9. CTF SHOW WEB_AK赛

    CTF SHOW平台的WEB AK赛: 签到_观己 <?php ​ if(isset($_GET['file'])){ $file = $_GET['file']; if(preg_match( ...

  10. django学习——request.POST.get(‘key’) 、 request.GET.get('key', '')

    request.POST是用来接受从前端表单中传过来的数据,比如用户登录过程中传递过来的username.passwrod等字段.返回类型是字典: 在后台进行数据获取时,有两种方法(以username ...