在文章中,我们将对输入到机器学习模型中的数据集进行预处理。

这里我们将对一个硬币数据集进行预处理,以便以后在监督学习模型中进行训练。在机器学习中预处理数据集通常涉及以下任务:

  1. 清理数据——通过对周围数据的平均值或使用其他策略来填补数据缺失或损坏造成的漏洞。
  2. 规范数据——将数据缩放值标准化到一个标准范围,通常是0到1。具有广泛值范围的数据可能会导致不规范,因此我们将所有数据都放在一个公共范围内。
  3. 一种热编码标签——将数据集中对象的标签或类编码为N维二进制向量,其中N是类的总数。数组元素都被设置为0,除了与对象的类相对应的元素,它被设置为1。这意味着在每个数组中都有一个值为1的元素。
  4. 将输入数据集分为训练集和验证集——训练集被用于训练模型,验证集是用于检查我们的训练结果。

这个例子我们将使用Numpy.NET,它基本上是Python中流行的Numpy库的.NET版本。

Numpy是一个专注于处理矩阵的库。

为了实现我们的数据集处理器,我们在PreProcessing文件夹中创建Utils类和DataSet类。Utils类合并了一个静态Normalize 方法,如下所示:

public class Utils
{
public static NDarray Normalize(string path)
{
var colorMode = Settings.Channels == 3 ? "rgb" : "grayscale";
var img = ImageUtil.LoadImg(path, color_mode: colorMode, target_size: (Settings.ImgWidth, Settings.ImgHeight));
return ImageUtil.ImageToArray(img) / 255;
} }

在这种方法中,我们用给定的颜色模式(RGB或灰度)加载图像,并将其调整为给定的宽度和高度。然后我们返回包含图像的矩阵,每个元素除以255。每个元素除以255是使它们标准化,因为图像中任何像素的值都在0到255之间,所以通过将它们除以255,我们确保了新的范围是0到1,包括255。

我们还在代码中使用了一个Settings类。该类包含用于跨应用程序使用的许多常量。另一个类DataSet,表示我们将要用来训练机器学习模型的数据集。这里我们有以下字段:

  1. _pathToFolder—包含图像的文件夹的路径。
  2. _extList—要考虑的文件扩展名列表。
  3. _labels—_pathToFolder中图像的标签或类。
  4. _objs -图像本身,表示为Numpy.NDarray。
  5. _validationSplit—用于将总图像数划分为验证集和训练集的百分比,在本例中,百分比将定义验证集与总图像数之间的大小。
  6. NumberClasses-数据集中唯一类的总数。
  7. TrainX -训练数据,表示为Numpy.NDarray。
  8. TrainY -训练标签,表示为Numpy.NDarray。
  9. ValidationX—验证数据,表示为Numpy.NDarray。
  10. ValidationY-验证标签,表示为Numpy.NDarray。

这是DataSet类:

public class DataSet
{
private string _pathToFolder;
private string[] _extList;
private List<int> _labels;
private List<NDarray> _objs;
private double _validationSplit;
public int NumberClasses { get; set; }
public NDarray TrainX { get; set; }
public NDarray ValidationX { get; set; }
public NDarray TrainY { get; set; }
public NDarray ValidationY { get; set; } public DataSet(string pathToFolder, string[] extList, int numberClasses, double validationSplit)
{
_pathToFolder = pathToFolder;
_extList = extList;
NumberClasses = numberClasses;
_labels = new List<int>();
_objs = new List<NDarray>();
_validationSplit = validationSplit;
} public void LoadDataSet()
{
// Process the list of files found in the directory.
string[] fileEntries = Directory.GetFiles(_pathToFolder);
foreach (string fileName in fileEntries)
if (IsRequiredExtFile(fileName))
ProcessFile(fileName); MapToClassRange();
GetTrainValidationData();
} private bool IsRequiredExtFile(string fileName)
{
foreach (var ext in _extList)
{
if (fileName.Contains("." + ext))
{
return true;
}
} return false;
} private void MapToClassRange()
{
HashSet<int> uniqueLabels = _labels.ToHashSet();
var uniqueLabelList = uniqueLabels.ToList();
uniqueLabelList.Sort(); _labels = _labels.Select(x => uniqueLabelList.IndexOf(x)).ToList();
} private NDarray OneHotEncoding(List<int> labels)
{
var npLabels = np.array(labels.ToArray()).reshape(-1);
return Util.ToCategorical(npLabels, num_classes: NumberClasses);
} private void ProcessFile(string path)
{
_objs.Add(Utils.Normalize(path));
ProcessLabel(Path.GetFileName(path));
} private void ProcessLabel(string filename)
{
_labels.Add(int.Parse(ExtractClassFromFileName(filename)));
} private string ExtractClassFromFileName(string filename)
{
return filename.Split('_')[0].Replace("class", "");
} private void GetTrainValidationData()
{
var listIndices = Enumerable.Range(0, _labels.Count).ToList();
var toValidate = _objs.Count * _validationSplit;
var random = new Random();
var xValResult = new List<NDarray>();
var yValResult = new List<int>();
var xTrainResult = new List<NDarray>();
var yTrainResult = new List<int>(); // Split validation data
for (var i = 0; i < toValidate; i++)
{
var randomIndex = random.Next(0, listIndices.Count);
var indexVal = listIndices[randomIndex];
xValResult.Add(_objs[indexVal]);
yValResult.Add(_labels[indexVal]);
listIndices.RemoveAt(randomIndex);
} // Split rest (training data)
listIndices.ForEach(indexVal =>
{
xTrainResult.Add(_objs[indexVal]);
yTrainResult.Add(_labels[indexVal]);
}); TrainY = OneHotEncoding(yTrainResult);
ValidationY = OneHotEncoding(yValResult);
TrainX = np.array(xTrainResult);
ValidationX = np.array(xValResult);
}
}

下面是每个方法的说明:

  1. LoadDataSet()——类的主方法,我们调用它来加载_pathToFolder中的数据集。它调用下面列出的其他方法来完成此操作。
  2. IsRequiredExtFile(filename) - 检查给定文件是否包含至少一个应该为该数据集处理的扩展名(在_extList中列出)。
  3. MapToClassRange() -获取数据集中唯一标签的列表。
  4. ProcessFile(path) -使用Utils.Normalize方法对图像进行规格化,并调用ProcessLabel方法。
  5. ProcessLabel(filename)——将ExtractClassFromFileName方法的结果添加为标签。
  6. ExtractClassFromFileName(filename) -从图像的文件名中提取类。
  7. GetTrainValidationData()——将数据集划分为训练子数据集和验证子数据集。

在本系列中,我们将使用https://cvl.tuwien.ac.at/research/cvl-databases/coin-image-dataset/上的硬币图像数据集。

要加载数据集,我们可以在控制台应用程序的主类中包含以下内容:

var numberClasses = 60;
var fileExt = new string[] { ".png" };
var dataSetFilePath = @"C:/Users/arnal/Downloads/coin_dataset";
var dataSet = new PreProcessing.DataSet(dataSetFilePath, fileExt, numberClasses, 0.2);
dataSet.LoadDataSet();

我们的数据现在可以输入到机器学习模型中。下一篇文章将介绍监督机器学习的基础知识,以及训练和验证阶段包括哪些内容。它是为没有AI经验的读者准备的。

欢迎关注我的公众号,如果你有喜欢的外文技术文章,可以通过公众号留言推荐给我。

C#中的深度学习(二):预处理识别硬币的数据集的更多相关文章

  1. 基于深度学习的人脸识别系统(Caffe+OpenCV+Dlib)【二】人脸预处理

    前言 基于深度学习的人脸识别系统,一共用到了5个开源库:OpenCV(计算机视觉库).Caffe(深度学习库).Dlib(机器学习库).libfacedetection(人脸检测库).cudnn(gp ...

  2. CNCC2017中的深度学习与跨媒体智能

    CNCC2017中的深度学习与跨媒体智能 转载请注明作者:梦里茶 目录 机器学习与跨媒体智能 传统方法与深度学习 图像分割 小数据集下的深度学习 语音前沿技术 生成模型 基于贝叶斯的视觉信息编解码 珠 ...

  3. 【OCR技术系列之四】基于深度学习的文字识别(3755个汉字)

    上一篇提到文字数据集的合成,现在我们手头上已经得到了3755个汉字(一级字库)的印刷体图像数据集,我们可以利用它们进行接下来的3755个汉字的识别系统的搭建.用深度学习做文字识别,用的网络当然是CNN ...

  4. 基于深度学习的人脸识别系统(Caffe+OpenCV+Dlib)【一】如何配置caffe属性表

    前言 基于深度学习的人脸识别系统,一共用到了5个开源库:OpenCV(计算机视觉库).Caffe(深度学习库).Dlib(机器学习库).libfacedetection(人脸检测库).cudnn(gp ...

  5. 基于深度学习的人脸识别系统(Caffe+OpenCV+Dlib)【三】VGG网络进行特征提取

    前言 基于深度学习的人脸识别系统,一共用到了5个开源库:OpenCV(计算机视觉库).Caffe(深度学习库).Dlib(机器学习库).libfacedetection(人脸检测库).cudnn(gp ...

  6. 基于深度学习的人脸识别系统系列(Caffe+OpenCV+Dlib)——【四】使用CUBLAS加速计算人脸向量的余弦距离

    前言 基于深度学习的人脸识别系统,一共用到了5个开源库:OpenCV(计算机视觉库).Caffe(深度学习库).Dlib(机器学习库).libfacedetection(人脸检测库).cudnn(gp ...

  7. 【OCR技术系列之四】基于深度学习的文字识别

    上一篇提到文字数据集的合成,现在我们手头上已经得到了3755个汉字(一级字库)的印刷体图像数据集,我们可以利用它们进行接下来的3755个汉字的识别系统的搭建.用深度学习做文字识别,用的网络当然是CNN ...

  8. Deep learning for visual understanding: A review 视觉理解中的深度学习:回顾 之一

    Deep learning for visual understanding: A review 视觉理解中的深度学习:回顾 ABSTRACT: Deep learning algorithms ar ...

  9. C#中的深度学习(一):使用OpenCV识别硬币

    在本系列文章中,我们将使用深度神经网络(DNN)来执行硬币识别.具体来说,我们将训练一个DNN识别图像中的硬币. 在本文中,我们将描述一个OpenCV应用程序,它将检测图像中的硬币.硬币检测是硬币完整 ...

随机推荐

  1. 使用Camtasia来消除视频中的声音

    大多数情况下,我们在录制电脑屏幕的时候都会把音频输出也一起录制下来,但也会有时候要后期进行重新配音,需要把事先一同录制的音频消除掉,今天小编来给大家说一说如何消除这种的视频声音. 首先打开Camtas ...

  2. Kafka 内存管理类BufferPool

    基本上每个成熟的框架或者工具都有一套内存管理机制 BufferPool 是Kafka  用来管理内存的工具类         BufferPool内存管理包含2个部分,已用空间+可用空间(未申请空间+ ...

  3. C语言是如何诞生的?地位怎样?未来发展趋势?

      C语言的历史 C语言的原型是A语言(ALGOL 60语言). 1963年,剑桥大学将ALGOL 60语言发展成为CPL(Combined Programming Language)语言. 1967 ...

  4. sentinel配置

    登陆接口 QPS5,异常0.8,熔断10s 1.异地登陆同省逻辑降级security 2.可疑用户判断certification 3.是否是危险设备判断account 4.是否是自动化imei,ime ...

  5. Qt实现客户端与服务器消息发送与文件传输

    Qt实现客户端与服务器消息发送与文件传输需要使用到 QTcpSocket:提供套接字QTcpServer:提供基于TCP的服务端,官方文档的解释如下: This class makes it poss ...

  6. 冲刺随笔——Day_Nine

    这个作业属于哪个课程 软件工程 (福州大学至诚学院 - 计算机工程系) 这个作业要求在哪里 团队作业第五次--Alpha冲刺 这个作业的目标 团队进行Alpha冲刺 作业正文 正文 其他参考文献 无 ...

  7. Verilog单周期CPU(未完待续)

    单周期CPU:指令周期=CPU周期 Top模块作为数据通路 运算器中有ALU,通路寄存器(R1.R2.R3.R4),数据缓冲寄存器(鉴于书上的运算器只有R0)........... 此为ALU和通用寄 ...

  8. Django-View中绕过RSCF验证

    在Django中对于基于函数的视图我们可以 @csrf_exempt 注解来标识一个视图可以被跨域访问.那么对于基于类的视图,我们应该怎么办呢? 简单来说可以有两种访问来解决 方法一:在类的 disp ...

  9. python核心高级学习总结2----------pdb的调试

    PDB调试 def getAverage(a,b): result =a+b print("result=%d"%result) return result a=100 b=200 ...

  10. moviepy音视频剪辑:lum_contrast什么时候使用以及图像处理什么时候需要调整亮度与对比度

    ☞ ░ 前往老猿Python博文目录 ░ 一.亮度.对比度的概念 图像的亮度(luminosity )也即对明度的度量(参考<音视频处理基础知识扫盲:数字视频YUV像素表示法以及视频帧和编解码概 ...