luogu P1453 城市环路
题目描述
整个城市可以看做一个N个点,N条边的单圈图(保证图连通),唯一的环便是绕城的环路。保证环上任意两点有且只有2条路径互通。图中的其它部分皆隶属城市郊区。
现在,有一位名叫Jim的同学想在B市开店,但是任意一条边的2个点不能同时开店,每个点都有一定的人流量Pi,在该点开店的利润就等于该店的人流量Pi×K(K≤10000),K的值将给出。
Jim想尽量多的赚取利润,请问他应该在哪些地方开店?
输入格式
第一行一个整数N 代表城市中点的个数。城市中的N个点由0~N-1编号。
第二行N个正整数,表示每个点的人流量Pi(Pi≤10000)。
下面N行,每行2个整数A,B,表示A,B建有一条双向路。
最后一行一个实数K。
输出格式
一个实数M,(保留1位小数),代表开店的最大利润。
很明显是基环树的题。
首先最后的K是没有什么用的,因为我们的运算里只有加法,所以把K放到最后乘也不影响。我们先不把K算进去。
先考虑一棵树的情况。设dp(u,0/1)表示u的子树可以得到的最大利润,并且u是选(1)还是不选(0)。那么递推公式显然:
dp[u][0]=\sum_{v{\in}son[u]} Max(dp[v][0],dp[v][1]);
\]
初始化dp(u,0)=0,dp(u,1)=P(u)。目标状态为Max(dp(root,0/1))。
然而基环树就不那么简单。
朴素的做法就是枚举环上的每条边,把它断掉之后原图会变成一棵树,然后在树上做刚才的dp,得出对应的ans。枚举完所有边后去最大值即可。
但是我们发现断开一条边以后对于每个点选与不选没有影响。但是可以消除后效性。所以我们只需要断开任意一条边,然后分别以这条边的两个端点为根dp一遍即可。
时间复杂度为O(N)。
#include<iostream>
#include<cstring>
#include<cstdio>
#define maxn 1000001
#define inf 0x3f3f3f3f
using namespace std;
struct edge{
int to,next;
edge(){}
edge(const int &_to,const int &_next){ to=_to,next=_next; }
}e[maxn<<1];
int head[maxn],k;
int n,val[maxn],ans;
double K;
inline int read(){
register int x(0),f(1); register char c(getchar());
while(c<'0'||'9'<c){ if(c=='-') f=-1; c=getchar(); }
while('0'<=c&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
inline void add(const int &u,const int &v){ e[k]=edge(v,head[u]),head[u]=k++; }
bool flag[maxn];
int s,t;
inline void getloop(){
for(register int i=0;i<k;i+=2){
int u=e[i].to,v=e[i^1].to;
if(flag[u]&&flag[v]){ s=u,t=v; return; }
flag[u]=flag[v]=true;
}
}
int dp[maxn][2];
bool vis[maxn];
void dfs(int u){
vis[u]=true,dp[u][1]=val[u],dp[u][0]=0;
for(register int i=head[u];~i;i=e[i].next){
int v=e[i].to;
if(vis[v]) continue;
dfs(v),dp[u][0]+=max(dp[v][0],dp[v][1]),dp[u][1]+=dp[v][0];
}
}
int main(){
memset(head,-1,sizeof head);
n=read();
for(register int i=1;i<=n;i++) val[i]=read();
for(register int i=1;i<=n;i++){
int u=read()+1,v=read()+1;
add(u,v),add(v,u);
}
scanf("%lf",&K);
getloop();
dfs(s),ans=max(ans,dp[s][0]);
memset(vis,false,sizeof vis);
dfs(t),ans=max(ans,dp[t][0]);
printf("%.1lf\n",ans*K);
return 0;
}
luogu P1453 城市环路的更多相关文章
- LUOGU P1453 城市环路(基环树+dp)
传送门 解题思路 一道基环树上$dp$的题,这种题比较套路吧,首先第一遍$dfs$把环找出来,然后对于环上的每一个点都向它子树内做一次树形$dp$,$f[i][0/1]$表示到了$i$这个点选或不选的 ...
- BSOJ3760||洛谷P1453 城市环路 题解
城市环路 Description 一座城市,往往会被人们划分为几个区域,例如住宅区.商业区.工业区等等.B市就被分为了以下的两个区域——城市中心和城市郊区.在着这两个区域的中间是一条围绕B市的环路,环 ...
- 洛谷 P1453 城市环路 ( 基环树树形dp )
题目链接 题目背景 一座城市,往往会被人们划分为几个区域,例如住宅区.商业区.工业区等等.B市就被分为了以下的两个区域--城市中心和城市郊区.在着这两个区域的中间是一条围绕B市的环路,环路之内便是B市 ...
- P1453 城市环路
题目背景 一座城市,往往会被人们划分为几个区域,例如住宅区.商业区.工业区等等.B市就被分为了以下的两个区域——城市中心和城市郊区.在着这两个区域的中间是一条围绕B市的环路,环路之内便是B市中心. 题 ...
- 题解 P1453 【城市环路】
P1453 城市环路 感觉基环树(or环套树)的题目一般都是找到树上的环,断掉一条边再进行树上的操作(如noip2018P5022 旅行) 双倍经验:P2607 [ZJOI2008]骑士 P1453和 ...
- luogu P1401 城市
题目链接 luogu P1401 城市 题解 二分最小边权,dinic检验 代码 // luogu-judger-enable-o2 /* 二分最小边权,dinic检验 */ #include< ...
- luogu P4842 城市旅行
嘟嘟嘟 好题,好题 刚开始突发奇想写了一个\(O(n ^ 2)\)暴力,结果竟然过了?!后来才知道是上传题的人把单个数据点开成了10s-- 不过不得不说我这暴力写的挺好看的.删边模仿链表删边,加边的时 ...
- Luogu P1401 城市(二分+网络流)
P1401 城市 题意 题目描述 N(2<=n<=200)个城市,M(1<=m<=40000)条无向边,你要找T(1<=T<=200)条从城市1到城市N的路,使得最 ...
- [ZJOI2008]骑士 题解
题面 这道题稍微想一想就会联想到树形DP的入门题:没有上司的舞会: 但是再想一想会发现这根本就不是一颗树,因为它比树多了一条边: 这时候我们引入一个新的概念:基环树: 顾名思义(??),基环树就是在一 ...
随机推荐
- CVE-2019-0708——RDP漏洞利用
影响系统:windows2003.windows2008.windows2008 R2.windows xp .win7环境:攻击机:kali ip:192.168.40.128靶机:windows ...
- 使用php进行微信小程序图片安全验证
想用到微信公众平台的图片识别系统,结果报错{"errcode":41005,"errmsg":"media data missing hint: [x ...
- RocketMQ(七):高性能探秘之MappedFile
RocketMQ作为消息中间件,经常会被用来和其他消息中间件做比较,比对rabbitmq, kafka... 但个人觉得它一直对标的,都是kafka.因为它们面对的场景往往都是超高并发,超高性能要求的 ...
- Python 爬虫进阶必备
关于新闻平台请求头加密参数逻辑分析 抓包与加密定位 先来看看加密的请求
- ASP.NET Core 3.1使用Swagger
一.什么是Swagger 随着技术的不断方法,现在的网站开发基本都是使用前后端分离的模式,这样使前端开发者和后端开发者只需要专注自己擅长的即可.但这种方式会存在一种问题:前后端通过API接口的方式进行 ...
- 【Windows系统常用命令集合】
查看建立的TCP连接:netstat -n 查看建立的TCP连接的进程:netstat -nb 查看本机侦听的端口: netstat -an (说明:如果端口没有侦听 检查服务) 测试到远程计算机的某 ...
- 1.自定义view入门
1.继承自view 系统提供的view 如 TextView .ImageView 都是继承自view的: 2.自定义一个TextView 通过自定义一个TextView 来熟悉继承自view 的自定 ...
- Java获取某年某月的第一天和最后一天
/** * 获取某年某月的第一天 * @Title:getFisrtDayOfMonth * @Description: * @param:@param year * @param:@param mo ...
- Java发送企业微信应用消息
1.发送消息与被动回复消息 (1)流程不同:发送消息是第三方服务器主动通知微信服务器向用户发消息.而被动回复消息是 用户发送消息之后,微信服务器将消息传递给 第三方服务器,第三方服务器接收到消息后,再 ...
- Node.js躬行记(5)——定时任务的调试
最近做一个活动,需要用到定时任务,于是使用了 node-schedule 库. 用法很简单,就是可配置开始.结束时间,以及重复执行的时间点,如下所示,从2020-12-23T09:00:00Z开始,每 ...