luogu3706 [SDOI2017]硬币游戏
LINK:硬币游戏
对于40分的暴力 构造出AC自动机 列出转移矩阵 暴力高消。右转上一篇文章。
对于100分 我们不难想到这个矩阵过大 且没有用的节点很多我们最后只要n个节点的答案 其他节点的答案可以不要。
考虑把没用的节点的答案压到一点上。相同的套路 我们设f[i]表示经过第i个点的期望次数 由于是到达某个点我们强制停止 所以概率*结果=期望次数。
此时结果为1/0 所以这个期望次数在数值之上和概率是相等的。
对于第i个终止节点来说我们考虑一下这个点的期望次数怎么求出。
显然是由非终止节点转移过来 由于每次翻硬币只有两种可能 或者说字符集大小为2 所以转移过来至少需要m条边且 概率为\(\frac{1}{2^m}\)
但是这其中存在一些不合法的情况 如 我们从一个非法状态转移+自身前缀状态的一部分 可能恰好和其他字符串是相等的 此时游戏结束概率也转移不来。
要把这些情况造成的影响全部减掉 \(f_i=\frac{1}{2^m}f_0-...\)上面的事情发生在当前字符串的前缀和其他字符串的后缀相等时会发生。
考虑匹配的长度为k 那个点为j 那么我们要减去 \(\frac{1}{2^{m-k}}f_j\) 所代表的含义为 前m-k长度的那个点的期望次数为 f_j的期望次数的一部分
于是乎就可以列出n个方程 但是有n+1个未知数 考虑加一个方程 \(\sum{f_i}=1\)
写到这里我想就很明朗了 很不错的题目。
这里使用hash判断前后缀 注意初始化的问题 我们对于f[i]的单项系数也在判断前后缀中搞。这样比较方便不需要特判最后一位什么的。
而且最后一位也不合法不属于0号节点里面 所以可以这样做 我迷了半天。。
const int MAXN=310;
int n,m;
char b[MAXN][MAXN];
db a[MAXN][MAXN],p[MAXN];
ll pw[MAXN],qz[MAXN][MAXN],hz[MAXN][MAXN];
inline void GAUSS()
{
for(int i=0;i<=n;++i)
{
int p=i;
for(int j=i+1;j<=n;++j)if(fabs(a[j][i])>fabs(a[p][i]))p=j;
if(i!=p)rep(0,n+1,j)swap(a[i][j],a[p][j]);
rep(0,n,j)
{
if(i==j)continue;
db d=a[j][i]/a[i][i];
rep(0,n+1,k)a[j][k]-=a[i][k]*d;
}
}
rep(0,n,i)a[i][n+1]/=a[i][i];
}
int main()
{
freopen("1.in","r",stdin);
gt(n);gt(m);p[0]=pw[0]=1;
rep(1,n,i)scanf("%s",b[i]+1);
rep(1,m,i)p[i]=p[i-1]/2,pw[i]=pw[i-1]*P%mod;
rep(1,n,i)rep(1,m,j)
{
qz[i][j]=(qz[i][j-1]*P+b[i][j])%mod;
hz[i][j]=(hz[i][j-1]+b[i][m-j+1]*pw[j-1])%mod;
}
rep(1,n,i)
{
a[i][0]+=p[m];
rep(1,n,j)rep(1,m,k)
if(qz[i][k]==hz[j][k])a[i][j]=a[i][j]-p[m-k];
}
rep(1,n+1,i)a[0][i]=1;
//rep(0,n,i){rep(0,n+1,j)cout<<a[i][j]<<' ';cout<<endl;}
GAUSS();
rep(1,n,i)printf("%.10lf\n",a[i][n+1]);
return 0;
}
update:写完后2h又发现了点其他东西 想了半天 发现上述等式没有错。
等式阐述了一个类似于容斥的东西。其中 对于特定的某个点 我们想要走到\(2^{m-k}\)需要这个概率 而右边虽然是 \(2^m\)的系数 但是其代表了后来是走到了fj的
而我们的前者则是 固定为fj 所以这两个东西显然相等。
又思考了20min 想到了一个更合理的思路。还是关于式子的问题。
我们考虑 减掉不合法方案 设不合法方案的点 为w 我们其实多加了一个 \(f_w\frac{1}{2^m}\) 在左边减掉其。
首先我们要先走到w这个点 设此匹配长度为k 那么概率为\(\frac{1}{2^{m-k}}\) 其期望要再乘上fj。
感觉证明还是很不顺畅 先咕了。
luogu3706 [SDOI2017]硬币游戏的更多相关文章
- BZOJ:4820: [Sdoi2017]硬币游戏&&BZOJ:1444: [Jsoi2009]有趣的游戏(高斯消元求概率)
1444: [Jsoi2009]有趣的游戏 4820: [Sdoi2017]硬币游戏 这两道题都是关于不断随机生成字符后求出现给定字符串的概率的问题. 第一题数据范围较小,将串建成AC自动机以后,以A ...
- [Sdoi2017]硬币游戏 [高斯消元 KMP]
[Sdoi2017]硬币游戏 题意:硬币序列,H T等概率出现,\(n \le 300\)个人猜了一个长为$ m \le 300$的字符串,出现即获胜游戏结束.求每个人获胜概率 考场用了[1444: ...
- 【BZOJ4820】[SDOI2017]硬币游戏(高斯消元)
[BZOJ4820][SDOI2017]硬币游戏(高斯消元) 题面 BZOJ 洛谷 题解 第一眼的感觉就是构\(AC\)自动机之后直接高斯消元算概率,这样子似乎就是\(BZOJ1444\)了.然而点数 ...
- 4820: [Sdoi2017]硬币游戏
4820: [Sdoi2017]硬币游戏 链接 分析: 期望dp+高斯消元. 首先可以建出AC自动机,Xi表示经过节点i的期望次数,然后高斯消元,这样点的个数太多,复杂度太大.但是AC自动机上末尾节点 ...
- BZOJ4820 Sdoi2017 硬币游戏 【概率期望】【高斯消元】【KMP】*
BZOJ4820 Sdoi2017 硬币游戏 Description 周末同学们非常无聊,有人提议,咱们扔硬币玩吧,谁扔的硬币正面次数多谁胜利.大家纷纷觉得这个游戏非常符合同学们的特色,但只是扔硬币实 ...
- 【BZOJ4820】[Sdoi2017]硬币游戏 AC自动机+概率DP+高斯消元
[BZOJ4820][Sdoi2017]硬币游戏 Description 周末同学们非常无聊,有人提议,咱们扔硬币玩吧,谁扔的硬币正面次数多谁胜利.大家纷纷觉得这个游戏非常符合同学们的特色,但只是扔硬 ...
- [BZOJ 4820] [SDOI2017] 硬币游戏(高斯消元+概率论+字符串hash)
[BZOJ 4820] [SDOI2017] 硬币游戏(高斯消元+概率论+字符串hash) 题面 扔很多次硬币后,用H表示正面朝上,用T表示反面朝上,会得到一个硬币序列.比如HTT表示第一次正面朝上, ...
- [bzoj4820][Sdoi2017]硬币游戏
来自FallDream的博客,未经允许,请勿转载,谢谢. 周末同学们非常无聊,有人提议,咱们扔硬币玩吧,谁扔的硬币正面次数多谁胜利.大家纷纷觉得这个游戏非常符合同学们的特色,但只是扔硬币实在是太单调了 ...
- BZOJ 4820 [SDOI2017] 硬币游戏
Description 周末同学们非常无聊,有人提议,咱们扔硬币玩吧,谁扔的硬币正面次数多谁胜利.大家纷纷觉得这个游戏非常符合同学们的特色,但只是扔硬币实在是太单调了.同学们觉得要加强趣味性,所以要找 ...
随机推荐
- 04-springboot整合elasticsearch初识-简单增删改查及复杂排序,分页,聚合操作
前面大概了解了一下elasticsearch的数据存储和数据的查询.现在学习一下,es的复杂操作. 官网相关文档地址:https://www.elastic.co/guide/en/e ...
- 记一次开发CefSharp做浏览器时关闭页面上时未释放遇到的小问题
问题:当CefSharp放在List里,然后用了Remove移除,CefSharp是否还存在. 我将Cefsharp做成UserControl控件,然后在Main页面里采用List<UserCo ...
- [JAVA]枚举类型的应用
本文介绍枚举类的概念和开发过程中枚举的用法. 枚举类使用enum关键字定义,enum默认继承自Enum类,由于java单继承的特点,enum类无法再继承其他父类 一.枚举类的特性 1.简单枚举类的定义 ...
- 怎么查看HBase表的创建时间
前几天HBase出现了RIT告警,忽然发现发出告警的Region所属的表并不是我创建出来的,于是就想看看这些表是怎么来的. 一时也没什么头绪,就先看看这些表是什么时候创建出来的吧,然后再根据时间点看看 ...
- CTFHub_技能树_文件上传
文件上传 无限制 直接上传一句话后门,使用蚁剑连接: 获得flag: 前端验证 尝试直接上传后门,发现被拦截,经过判断为Javascript前端验证: 这里可以使用Firefox浏览器插件禁用页面js ...
- vue项目发布时去除console语句
在vue.config.js中添加下面的代码即可 // vue-cli version > 3 modeule.exports = { configureWebpack: config => ...
- 重装win7时遇到点小问题
最近装系统的时候有个头疼的事,事情的起因是这样的,我在工作的时候用的win7,破解的时候各种工具都破解不了,说是有未分配的盘符.并且,当时装的是没更新的win7,工作上要用到ie11只能在w ...
- Reface.AppStarter 基本示例
Reface.AppStarter 向应用层提供以下几项 核心 功能 以模块化组织你的应用程序 自动注册组件至 IOC 容器 自动映射配置文件至配置类 在模块定义类中额外追加组件至 IOC 容器 在模 ...
- python常见报错信息!错误和异常!附带处理方法
作为 Python 初学者,在刚学习 Python 编程时,经常会看到一些报错信息. Python 有两种错误很容易辨认:语法错误和异常. Python assert(断言)用于判断一个表达式,在表达 ...
- 不懂DevOps!他在升职加薪的那天下午,提出了离职
不久前我们一个已毕业的学员向班主任老师分享了前几天他遇到的一件事: 一个许久未联系他的朋友突然打电话给他,寒暄了几句后突然说,想来北京找工作,问能不能帮忙给介绍一些工作. 在接下来的通话中,我们学员了 ...