LINK:硬币游戏

对于40分的暴力 构造出AC自动机 列出转移矩阵 暴力高消。右转上一篇文章。

对于100分 我们不难想到这个矩阵过大 且没有用的节点很多我们最后只要n个节点的答案 其他节点的答案可以不要。

考虑把没用的节点的答案压到一点上。相同的套路 我们设f[i]表示经过第i个点的期望次数 由于是到达某个点我们强制停止 所以概率*结果=期望次数。

此时结果为1/0 所以这个期望次数在数值之上和概率是相等的。

对于第i个终止节点来说我们考虑一下这个点的期望次数怎么求出。

显然是由非终止节点转移过来 由于每次翻硬币只有两种可能 或者说字符集大小为2 所以转移过来至少需要m条边且 概率为\(\frac{1}{2^m}\)

但是这其中存在一些不合法的情况 如 我们从一个非法状态转移+自身前缀状态的一部分 可能恰好和其他字符串是相等的 此时游戏结束概率也转移不来。

要把这些情况造成的影响全部减掉 \(f_i=\frac{1}{2^m}f_0-...\)上面的事情发生在当前字符串的前缀和其他字符串的后缀相等时会发生。

考虑匹配的长度为k 那个点为j 那么我们要减去 \(\frac{1}{2^{m-k}}f_j\) 所代表的含义为 前m-k长度的那个点的期望次数为 f_j的期望次数的一部分

于是乎就可以列出n个方程 但是有n+1个未知数 考虑加一个方程 \(\sum{f_i}=1\)

写到这里我想就很明朗了 很不错的题目。

这里使用hash判断前后缀 注意初始化的问题 我们对于f[i]的单项系数也在判断前后缀中搞。这样比较方便不需要特判最后一位什么的。

而且最后一位也不合法不属于0号节点里面 所以可以这样做 我迷了半天。。

const int MAXN=310;
int n,m;
char b[MAXN][MAXN];
db a[MAXN][MAXN],p[MAXN];
ll pw[MAXN],qz[MAXN][MAXN],hz[MAXN][MAXN];
inline void GAUSS()
{
for(int i=0;i<=n;++i)
{
int p=i;
for(int j=i+1;j<=n;++j)if(fabs(a[j][i])>fabs(a[p][i]))p=j;
if(i!=p)rep(0,n+1,j)swap(a[i][j],a[p][j]);
rep(0,n,j)
{
if(i==j)continue;
db d=a[j][i]/a[i][i];
rep(0,n+1,k)a[j][k]-=a[i][k]*d;
}
}
rep(0,n,i)a[i][n+1]/=a[i][i];
}
int main()
{
freopen("1.in","r",stdin);
gt(n);gt(m);p[0]=pw[0]=1;
rep(1,n,i)scanf("%s",b[i]+1);
rep(1,m,i)p[i]=p[i-1]/2,pw[i]=pw[i-1]*P%mod;
rep(1,n,i)rep(1,m,j)
{
qz[i][j]=(qz[i][j-1]*P+b[i][j])%mod;
hz[i][j]=(hz[i][j-1]+b[i][m-j+1]*pw[j-1])%mod;
}
rep(1,n,i)
{
a[i][0]+=p[m];
rep(1,n,j)rep(1,m,k)
if(qz[i][k]==hz[j][k])a[i][j]=a[i][j]-p[m-k];
}
rep(1,n+1,i)a[0][i]=1;
//rep(0,n,i){rep(0,n+1,j)cout<<a[i][j]<<' ';cout<<endl;}
GAUSS();
rep(1,n,i)printf("%.10lf\n",a[i][n+1]);
return 0;
}

update:写完后2h又发现了点其他东西 想了半天 发现上述等式没有错。

等式阐述了一个类似于容斥的东西。其中 对于特定的某个点 我们想要走到\(2^{m-k}\)需要这个概率 而右边虽然是 \(2^m\)的系数 但是其代表了后来是走到了fj的

而我们的前者则是 固定为fj 所以这两个东西显然相等。

又思考了20min 想到了一个更合理的思路。还是关于式子的问题。

我们考虑 减掉不合法方案 设不合法方案的点 为w 我们其实多加了一个 \(f_w\frac{1}{2^m}\) 在左边减掉其。

首先我们要先走到w这个点 设此匹配长度为k 那么概率为\(\frac{1}{2^{m-k}}\) 其期望要再乘上fj。

感觉证明还是很不顺畅 先咕了。

luogu3706 [SDOI2017]硬币游戏的更多相关文章

  1. BZOJ:4820: [Sdoi2017]硬币游戏&&BZOJ:1444: [Jsoi2009]有趣的游戏(高斯消元求概率)

    1444: [Jsoi2009]有趣的游戏 4820: [Sdoi2017]硬币游戏 这两道题都是关于不断随机生成字符后求出现给定字符串的概率的问题. 第一题数据范围较小,将串建成AC自动机以后,以A ...

  2. [Sdoi2017]硬币游戏 [高斯消元 KMP]

    [Sdoi2017]硬币游戏 题意:硬币序列,H T等概率出现,\(n \le 300\)个人猜了一个长为$ m \le 300$的字符串,出现即获胜游戏结束.求每个人获胜概率 考场用了[1444: ...

  3. 【BZOJ4820】[SDOI2017]硬币游戏(高斯消元)

    [BZOJ4820][SDOI2017]硬币游戏(高斯消元) 题面 BZOJ 洛谷 题解 第一眼的感觉就是构\(AC\)自动机之后直接高斯消元算概率,这样子似乎就是\(BZOJ1444\)了.然而点数 ...

  4. 4820: [Sdoi2017]硬币游戏

    4820: [Sdoi2017]硬币游戏 链接 分析: 期望dp+高斯消元. 首先可以建出AC自动机,Xi表示经过节点i的期望次数,然后高斯消元,这样点的个数太多,复杂度太大.但是AC自动机上末尾节点 ...

  5. BZOJ4820 Sdoi2017 硬币游戏 【概率期望】【高斯消元】【KMP】*

    BZOJ4820 Sdoi2017 硬币游戏 Description 周末同学们非常无聊,有人提议,咱们扔硬币玩吧,谁扔的硬币正面次数多谁胜利.大家纷纷觉得这个游戏非常符合同学们的特色,但只是扔硬币实 ...

  6. 【BZOJ4820】[Sdoi2017]硬币游戏 AC自动机+概率DP+高斯消元

    [BZOJ4820][Sdoi2017]硬币游戏 Description 周末同学们非常无聊,有人提议,咱们扔硬币玩吧,谁扔的硬币正面次数多谁胜利.大家纷纷觉得这个游戏非常符合同学们的特色,但只是扔硬 ...

  7. [BZOJ 4820] [SDOI2017] 硬币游戏(高斯消元+概率论+字符串hash)

    [BZOJ 4820] [SDOI2017] 硬币游戏(高斯消元+概率论+字符串hash) 题面 扔很多次硬币后,用H表示正面朝上,用T表示反面朝上,会得到一个硬币序列.比如HTT表示第一次正面朝上, ...

  8. [bzoj4820][Sdoi2017]硬币游戏

    来自FallDream的博客,未经允许,请勿转载,谢谢. 周末同学们非常无聊,有人提议,咱们扔硬币玩吧,谁扔的硬币正面次数多谁胜利.大家纷纷觉得这个游戏非常符合同学们的特色,但只是扔硬币实在是太单调了 ...

  9. BZOJ 4820 [SDOI2017] 硬币游戏

    Description 周末同学们非常无聊,有人提议,咱们扔硬币玩吧,谁扔的硬币正面次数多谁胜利.大家纷纷觉得这个游戏非常符合同学们的特色,但只是扔硬币实在是太单调了.同学们觉得要加强趣味性,所以要找 ...

随机推荐

  1. NumPy基础知识图谱

    所有内容整理自<利用Python进行数据分析>,使用MindMaster Pro 7.3制作,emmx格式,源文件已经上传Github,需要的同学转左上角自行下载.该图谱只是NumPy的基 ...

  2. Hyperledger Fabric 2.1 搭建教程

    Hyperledger Fabric 2.1 搭建教程 环境准备 版本 Ubuntu 18.04 go 1.14.4 fabric 2.1 fabric-sample v1.4.4 nodejs 12 ...

  3. js 整理 前端知识点 前端面试题 (2020)(vue)

    数据类型 字符串(String).数字(Number).布尔(Boolean).对空(Null).未定义(Undefined).Symbol. 引用数据类型:对象(Object).数组(Array). ...

  4. python 生成器(一):生成器基础(一)生成器函数

    前言 实现相同功能,但却符合 Python 习惯的方式是,用生成器函数代替SentenceIterator 类.示例 14-5 sentence_gen.py:使用生成器函数实现 Sentence 类 ...

  5. vue中使用elmentUI的Upload组件提交文件和后台接收

    1.参考此博客,希望有以下知识储备 vue的路由,跨域请求,springboot2.X,html,已经阅读elementUI官网中关于upload组件的详细介绍. 2.废话不多说,直接讲解细节. 前台 ...

  6. Windows下配置ChromeDriver

    1.查看自己chrome浏览器的版本. 浏览器地址栏输入以下地址 chrome://version 2.通过自己的版本下载相应的chromedriver.exe 下载地址:http://npm.tao ...

  7. ant-design-vue中实现modal模态框的复用(添加,编辑展示同一个模态框)

    用两个button(添加,编辑)按钮展示同一个模态框,并不是什么大问题,问题在于解决这两个模态框得有自己的确定和取消方法 父页面完全接管子页面(利于子页面复用) 父页面代码: <template ...

  8. 毕业三年从月薪6K到20K

    首先,声明这不是标题党,是一个真实的北漂故事!     为什么写这篇文章呢?第一,有感而发,感恩遇到的人和事,其次,希望对读这篇文章的你有所帮助 毕业那年 时间追溯到17年6月30号,那天毕业典礼,之 ...

  9. Harbor打怪升级

    目录 一.目标 二.V1.4升级至V1.6 三.V1.6升级至V1.9 四.V1.9升级至V2.0 五.写在最后 一.目标 Harbor V1.4版本升级至V2.0 注: Harbor升级需要注意的是 ...

  10. django admin后台管理功能的学习

    1.简要说明 用过Django框架的童鞋肯定都知道,在创建完Django项目后,每个app下,都会有一个urls.py文件,里边会有如下几行: from django.contrib import a ...