[MIT6.006] 18. Speeding up Dijkstra 加速Dijkstra算法
在之前的课我们讲过了Dijkstra算法,先回顾下,如下图:
那么如果加速DIjkstra算法寻找最短路径呢?这节课上讲师讲了两种方法:双向搜索(Bi-Directional Search)和目标方向搜索(Goal-Directed Search)。
一、 双向搜索(Bi-Directional Search)
在正式介绍双向搜索方式前,需要介绍下一个它的双向概念是什么样的,如下图所示:
总结来说就是forward和backward方向上分别定义各自的图变量(例:当前最小路径权重和df, db 当前点的predecessor∏f, ∏b, 当前点的优先队列Qf, Qb)。
那么,现在有两个问题:
(1)双向搜索的中止条件是什么?
答:在前向和后向搜索时,点被处理(即从各自优先队列中删去)。
(2)怎么找到点s到t的最短路径?
答:如果点w都第一次在优先队列Qf, Qb中被处理掉,那么在前向图上,找到点s到w的最短路径。在后向图上,找到t到w的最短路径。之后将它们相加即可得到图(不含负权重)的最短路径。但这个会有个问题:w有可能不在最短路径上。我们来看个例子,就能很好的理解这个问题是为什么了,请见下图:
所以,我们能发现如果单纯按上面方法找最短路径,最后可能找到的会是最短长度路径,而非最短权重路径。该问题的解决方法很简单,如下图所示,就是找到一个x点,它是df(x) + db(x)的最小值即可。
二、目标方向搜索(Goal-Directed Search)
假设我们有个图,点s到v1的权重是5,点s到v2的权重也是5,那么有没有什么办法能让我们知道哪条路径是最小路径的可能性会大些?答:有。只要根据下图所示的函数重新修改edge上的权重,我们就能更方便的找到最小路径的方向了。
[MIT6.006] 18. Speeding up Dijkstra 加速Dijkstra算法的更多相关文章
- 【uva 658】It's not a Bug, it's a Feature!(图论--Dijkstra或spfa算法+二进制表示+类“隐式图搜索”)
题意:有N个潜在的bug和m个补丁,每个补丁用长为N的字符串表示.首先输入bug数目以及补丁数目.然后就是对M个补丁的描述,共有M行.每行首先是一个整数,表明打该补丁所需要的时间.然后是两个字符串,第 ...
- Dijkstra最短路算法
Dijkstra最短路算法 --转自啊哈磊[坐在马桶上看算法]算法7:Dijkstra最短路算法 上节我们介绍了神奇的只有五行的Floyd最短路算法,它可以方便的求得任意两点的最短路径,这称为“多源最 ...
- 算法学习笔记(三) 最短路 Dijkstra 和 Floyd 算法
图论中一个经典问题就是求最短路.最为基础和最为经典的算法莫过于 Dijkstra 和 Floyd 算法,一个是贪心算法,一个是动态规划.这也是算法中的两大经典代表.用一个简单图在纸上一步一步演算,也是 ...
- Dijkstra和Prim算法的区别
Dijkstra和Prim算法的区别 1.先说说prim算法的思想: 众所周知,prim算法是一个最小生成树算法,它运用的是贪心原理(在这里不再证明),设置两个点集合,一个集合为要求的生成树的点集合A ...
- 【坐在马桶上看算法】算法7:Dijkstra最短路算法
上周我们介绍了神奇的只有五行的Floyd最短路算法,它可以方便的求得任意两点的最短路径,这称为“多源最短路”.本周来来介绍指定一个点(源点)到其余各个顶点的最短路径,也叫做“单源最短路径 ...
- [MIT6.006] 1. Algorithmic Thinking, Peak Finding 算法思维,峰值寻找
[MIT6.006] 系列笔记将记录我观看<MIT6.006 Introduction to Algorithms, Fall 2011>的课程内容和一些自己补充扩展的知识点.该课程主要介 ...
- [MIT6.006] 16. Dijkstra
先回顾下上节课的内容: 下面来看一个定理:对于所有的点来说,放松操作总是满足 d[v] ≥ δ(s, v).即点s到点v的最短路径总是小于或等于当前点d的路径权重.证明如下: 在正是进入复杂的图前,先 ...
- Dijkstra和Floyd算法
#include #include #include #define Infinity 999 //最大值 #define Max_Vertex_Num 20 //顶点数最多为20 #define L ...
- 最短路径问题的Dijkstra和SPFA算法总结
Dijkstra算法: 解决带非负权重图的单元最短路径问题.时间复杂度为O(V*V+E) 算法精髓:维持一组节点集合S,从源节点到该集合中的点的最短路径已被找到,算法重复从剩余的节点集V-S中选择最短 ...
随机推荐
- How to install the NVIDIA drivers on Fedora 32
https://linuxconfig.org/how-to-install-the-nvidia-drivers-on-fedora-32 The NVIDIA Driver is a progra ...
- Java第一课!
public class Text { public static void main(String[] args) { int a=100; //赋值a=100 System.out.println ...
- 手把手教你AspNetCore WebApi:Nginx(负载均衡)
前言 这几天小明又有烦恼了,系统上线一段时间后,系统性能出现了问题,缓存等都用上了,还是不能解决问题.马老板很大气,又买了3台服务器,让小明做个集群分流一下. 集群是什么? 是一种计算机系统,它通过一 ...
- .NET 5.0 RC2 发布,正式版即将在 11 月 .NET Conf 大会上发布
原文:http://dwz.win/ThX 作者:Richard 翻译:精致码农-王亮 说明:本译文舍弃了少许我实在不知道如何翻译但又不是很重要的语句. 今天(10月13日)我们发布了 .NET 5. ...
- Android开发教程之密码框右侧显示小眼睛
现在都说互联网寒冬,其实只要自身技术能力够强,咱们就不怕!我这边专门针对Android开发工程师整理了一套[Android进阶学习视频].[全套Android面试秘籍].[Android知识点PDF] ...
- pytest文档50-命令行参数--durations统计用例运行时间
前言 写完一个项目的自动化用例之后,发现有些用例运行较慢,影响整体的用例运行速度,于是领导说找出运行慢的那几个用例优化下. --durations 参数可以统计出每个用例运行的时间,对用例的时间做个排 ...
- 【Luogu】P1613 跑路
[Luogu]P1613 跑路 一.题目 题目描述 小A的工作不仅繁琐,更有苛刻的规定,要求小A每天早上在6:00之前到达公司,否则这个月工资清零.可是小A偏偏又有赖床的坏毛病.于是为了保住自己的工资 ...
- 【logstash】 - 使用json解析数
ilter-json:http://www.logstash.net/docs/1.4.2/filters/json json数据: {"account_number":995,& ...
- 理解Go协程与并发(转)
理解Go协程与并发 协程 Go语言里创建一个协程很简单,使用go关键字就可以让一个普通方法协程化: Copy package main import ( "fmt" " ...
- 尝试从零开始构建我的商城 (一) :使用Abp vNext快速一个简单的商城项目
尝试从零开始构建我的商城 (一) :使用Abp vNext快速搭建一个简单的项目 前言 GitHub地址 https://github.com/yingpanwang/MyShop 此文目的 本文将尝 ...