原题链接

题意简介

给出两个正整数 p 和 q,要求一个最大的 x 使 p 可被 x 整除,而 q 不可被 x 整除。

其中,\(1 \leq p \leq 10^{18} ; 2 \leq q \leq 10^9\)。

思路分析

对于 \(p\mod q \neq 0\) 的情形,显然 x 最大为 p。

至于 \(p \equiv 0 \mod q\) 的情形,可以这样考虑:

首先,我们不难发现 p 必然包含 q 的所有质因数,且 p 质因数分解后每个质因数的指数必定大于等于 q 的。

现在,我们希望 \(x \mod q \neq 0\) 。要求 x 最大,所以我们希望这个 x 可以尽可能地接近 p。

我们记:

\(p = A_1^{d_1} \times A_2^{d_2} \times ... \times A_n^{d_n} \times R\)

\(q = A_1^{c_1} \times A_2^{c_2} \times ... \times A_n^{c_n}\)

显然地,要使 x 尽可能大,我们只需要通过除去某个数,把 p 的某个质因数的指数 \(d_i\) 调到恰好比 \(c_i\) 小就行了。

所以,我们只需要对 q 做质因数分解,顺便求出 \(c_i,d_i\) 。

然后枚举每个质因数,找到最小的 \(A_i^{d_i-c_1+1}\) ,答案就是 p 除以它了。

代码库

#include <cstdio>
#include <cstring>
typedef long long ll;
const int N=1e5;
ll a[N],cc,cq[N],cp[N],aq[N],ap[N];
int main(){
ll t; scanf("%lld",&t);
while(t--){
ll p,q,p1,q1; scanf("%lld%lld",&p,&q);
if(p%q!=0){
printf("%lld\n",p);
continue;
}
p1=p; q1=q; cc=0;
for(int i=2;i*i<=q;i++){
if(q1%i==0){
//记得初始化
a[++cc]=i; cq[cc]=cp[cc]=0; ap[cc]=aq[cc]=1;
while(q1%i==0) q1/=i,cq[cc]++,aq[cc]*=i;
while(p1%i==0) p1/=i,cp[cc]++,ap[cc]*=i;
}
}
//不要忘了这一步
if(q1>1){
a[++cc]=q1;
cq[cc]=cp[cc]=0; ap[cc]=aq[cc]=1;
while(q1%a[cc]==0) q1/=a[cc],cq[cc]++,aq[cc]*=a[cc];
while(p1%a[cc]==0) p1/=a[cc],cp[cc]++,ap[cc]*=a[cc];
}
ll minn=1e18;
for(int i=1;i<=cc;i++){
if(ap[i]/(aq[i]/a[i])<minn) minn=ap[i]/(aq[i]/a[i]);
}
printf("%lld\n",p/minn);
}
return 0;
}

【CF1445C】Divison 题解的更多相关文章

  1. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  2. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  3. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  4. Codeforces Round #353 (Div. 2) ABCDE 题解 python

    Problems     # Name     A Infinite Sequence standard input/output 1 s, 256 MB    x3509 B Restoring P ...

  5. 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解

    题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...

  6. 2016ACM青岛区域赛题解

    A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  7. poj1399 hoj1037 Direct Visibility 题解 (宽搜)

    http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...

  8. 网络流n题 题解

    学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...

  9. CF100965C题解..

    求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...

随机推荐

  1. 黑菜菌的JAVA学习笔记

    简介 本文是笔者对<JAVA编程思想>的学习笔记.以自己的思维理解来写下这篇文章,尽可能地简练,易懂.本文将随本人学习进度实时更新 对象导论 抽象过程 汇编语言是对底层机器码的抽象,而面向 ...

  2. TIDB 笔记

    整体架构:

  3. C#中WebBrowser获取页面标签class值

    由于class是JavaScript的保留关键字 所以在C#中使用GetAttribute("className")来获取hmtlElement的class值 而不是GetAttr ...

  4. Centos-进程运行状态-ps

    ps 显示系统进程在瞬间的运行状态 相关选项 -a 显示所有用户的进程,包含每个程序的完整路径 -x 显示所有系统程序,包括那些没有终端的程序 -u 显示使用者的名称和起始时间 -f  详细显示程序执 ...

  5. Git多人项目开发流程演练

    1. 前言 本文利用 GitHub 平台进行一个多人项目开发流程的演练,以加深课上所学内容. 参考文献:五⼤场景玩转 Git,只要这一篇就够了! 2. 初始化项目 2.1 新建远程项目 一个多人项目通 ...

  6. Java date format 时间格式化

      import java.util.Date; import java.text.DateFormat; /** * 格式化时间类 * DateFormat.FULL = 0 * DateForma ...

  7. python 给IDLE添加行号

    [LineNumbers] enable=1 enable_editor=1 enable_shell=1 visible=1 [LineNumbers_cfgBindings] linenumber ...

  8. C/C++ typedef用法

    原文来源:https://blog.csdn.net/superhoy/article/details/53504472 第一.四个用途 用途一: 定义一种类型的别名,而不只是简单的宏替换.可以用作同 ...

  9. 【题解】NOIP2018 旅行

    题目戳我 \(\text{Solution:}\) 首先题目描述有一点不准确:回头是必须要走完一条路无路可走的时候才能返回. 对于树的情况:显然贪心做就完事了. 对于基环树的情况:对于一个\(n\)条 ...

  10. Tensorflow学习笔记No.4.1

    使用CNN卷积神经网络(1) 简单介绍CNN卷积神经网络的概念和原理. 已经了解的小伙伴可以跳转到Tensorflow学习笔记No.4.2学习如和用Tensorflow实现简单的卷积神经网络. 1.C ...