原题链接

题意简介

给出两个正整数 p 和 q,要求一个最大的 x 使 p 可被 x 整除,而 q 不可被 x 整除。

其中,\(1 \leq p \leq 10^{18} ; 2 \leq q \leq 10^9\)。

思路分析

对于 \(p\mod q \neq 0\) 的情形,显然 x 最大为 p。

至于 \(p \equiv 0 \mod q\) 的情形,可以这样考虑:

首先,我们不难发现 p 必然包含 q 的所有质因数,且 p 质因数分解后每个质因数的指数必定大于等于 q 的。

现在,我们希望 \(x \mod q \neq 0\) 。要求 x 最大,所以我们希望这个 x 可以尽可能地接近 p。

我们记:

\(p = A_1^{d_1} \times A_2^{d_2} \times ... \times A_n^{d_n} \times R\)

\(q = A_1^{c_1} \times A_2^{c_2} \times ... \times A_n^{c_n}\)

显然地,要使 x 尽可能大,我们只需要通过除去某个数,把 p 的某个质因数的指数 \(d_i\) 调到恰好比 \(c_i\) 小就行了。

所以,我们只需要对 q 做质因数分解,顺便求出 \(c_i,d_i\) 。

然后枚举每个质因数,找到最小的 \(A_i^{d_i-c_1+1}\) ,答案就是 p 除以它了。

代码库

#include <cstdio>
#include <cstring>
typedef long long ll;
const int N=1e5;
ll a[N],cc,cq[N],cp[N],aq[N],ap[N];
int main(){
ll t; scanf("%lld",&t);
while(t--){
ll p,q,p1,q1; scanf("%lld%lld",&p,&q);
if(p%q!=0){
printf("%lld\n",p);
continue;
}
p1=p; q1=q; cc=0;
for(int i=2;i*i<=q;i++){
if(q1%i==0){
//记得初始化
a[++cc]=i; cq[cc]=cp[cc]=0; ap[cc]=aq[cc]=1;
while(q1%i==0) q1/=i,cq[cc]++,aq[cc]*=i;
while(p1%i==0) p1/=i,cp[cc]++,ap[cc]*=i;
}
}
//不要忘了这一步
if(q1>1){
a[++cc]=q1;
cq[cc]=cp[cc]=0; ap[cc]=aq[cc]=1;
while(q1%a[cc]==0) q1/=a[cc],cq[cc]++,aq[cc]*=a[cc];
while(p1%a[cc]==0) p1/=a[cc],cp[cc]++,ap[cc]*=a[cc];
}
ll minn=1e18;
for(int i=1;i<=cc;i++){
if(ap[i]/(aq[i]/a[i])<minn) minn=ap[i]/(aq[i]/a[i]);
}
printf("%lld\n",p/minn);
}
return 0;
}

【CF1445C】Divison 题解的更多相关文章

  1. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  2. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  3. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  4. Codeforces Round #353 (Div. 2) ABCDE 题解 python

    Problems     # Name     A Infinite Sequence standard input/output 1 s, 256 MB    x3509 B Restoring P ...

  5. 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解

    题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...

  6. 2016ACM青岛区域赛题解

    A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  7. poj1399 hoj1037 Direct Visibility 题解 (宽搜)

    http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...

  8. 网络流n题 题解

    学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...

  9. CF100965C题解..

    求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...

随机推荐

  1. kafka面试总结

    本文为复习期间面试总结 从以下方面对kafka面试进行总结:基本原理架构/项目实践/生产者/消费者/协调者/存储层/控制器 基本原理架构 简单讲下什么是kafka[一句话概括/架构图] 消息队列选型 ...

  2. 一键生成数据库文档,堪称数据库界的Swagger,有点厉害

    最近部门订单业务调整,收拢其他业务线的下单入口,做个统一大订单平台.需要梳理各业务线的数据表,但每个业务线库都有近百张和订单相关的表,挨个表一个一个字段的弄脑瓜子嗡嗡的. 为了不重复 CV 操作,抱着 ...

  3. pycharm 配置 github

    今天突然想把自己的代码上传到github上去,然后就研究了下pycharm的配置. 首先呢,你得有个github的账号,然后建立一个项目. 然后打开pycharm,选择file->Setting ...

  4. Python练习题 038:Project Euler 010:两百万以内所有素数之和

    本题来自 Project Euler 第10题:https://projecteuler.net/problem=10 # Project Euler: Problem 10: Summation o ...

  5. Python练习题 009:水仙花数

    [Python练习题 009] 打印出所有的"水仙花数",所谓"水仙花数"是指一个三位数,其各位数字立方和等于该数本身.例如:153是一个"水仙花数& ...

  6. [iTyran原创]iPhone中OpenGL ES显示3DS MAX模型之二:lib3ds加载模型

    [iTyran原创]iPhone中OpenGL ES显示3DS MAX模型之二:lib3ds加载模型 作者:u0u0 - iTyran 在上一节中,我们分析了OBJ格式.OBJ格式优点是文本形式,可读 ...

  7. 084 01 Android 零基础入门 02 Java面向对象 01 Java面向对象基础 02 构造方法介绍 03 构造方法-this关键字

    084 01 Android 零基础入门 02 Java面向对象 01 Java面向对象基础 02 构造方法介绍 03 构造方法-this关键字 本文知识点:构造方法-this关键字 说明:因为时间紧 ...

  8. Java知识系统回顾整理01基础04操作符06三元运算符

    一.三元运算符 表达式?值1:值2 如果表达式为真 返回值1 如果表达式为假 返回值2 if语句学习链接:if语句 public class HelloWorld { public static vo ...

  9. Splay浅谈

    Splay是众多平衡树之一,它的功能十分强大,但常数极大.在LCT和许多数据结构中都能用到. Splay的核心操作,就是rotate.为了使树不是一条链,而是平衡的,我们需要旋转来维护形态.理论很简单 ...

  10. 部署MongoDB-4.2.7

    二进制部署很简单 创建存放软件目录下载解压 存放数据和日志及配置文件路径需要手工进行创建 mkdir -p /application/tools/ cd /application/tools/ wge ...