Going Home

POJ-2195

  • 这题使用的是最小费用流的模板。
  • 建模的时候我的方法出现错误,导致出现WA,根据网上的建图方法没错。
  • 这里的建图方法是每次到相邻点的最大容量为INF,而花费为1,因为花费等于距离。但是需要增加一个源点和一个汇点,然后将每个人和源点相连,每个房子和汇点相连,容量都为1,费用都为0.
#include<iostream>
#include<algorithm>
#include<cstring>
#include<queue>
#include<stack>
#include<cstdio>
using namespace std;
#define INF 0x3f3f3f3f
#define M(a, b) memset(a, b, sizeof(a))
const int N = 1e4 + 5;
const int dx[] = {-1, 1, 0, 0};
const int dy[] = {0, 0, -1, 1};
int n, m;
struct Edge {
int from, to, cap, flow, cost;
}; struct MCMF {
int n, m;
vector<Edge> edges;
vector<int> G[N];
int d[N], inq[N], p[N], a[N]; void init(int n) {
this->n = n;
for (int i = 0; i <= n; ++i) G[i].clear();
edges.clear();
} void AddEdge(int from, int to, int cap, int cost) {
edges.push_back(Edge{from, to, cap, 0, cost});
edges.push_back(Edge{to, from, 0, 0, -cost});
m = edges.size();
G[from].push_back(m-2); G[to].push_back(m-1);
} bool spfa(int s, int t, int &flow, int &cost) {
M(inq, 0); M(d, INF);
d[s] = 0; inq[s] = 1; p[s] = 0; a[s] = INF;
queue<int> q;
q.push(s);
while (!q.empty()) {
int x = q.front(); q.pop();
inq[x] = 0;
for (int i = 0; i < G[x].size(); ++i) {
Edge &e = edges[G[x][i]];
if (d[e.to] > d[x] + e.cost && e.cap > e.flow) {
d[e.to] = d[x] + e.cost;
p[e.to] = G[x][i];
a[e.to] = min(a[x], e.cap-e.flow);
if (inq[e.to]) continue;
q.push(e.to); inq[e.to] = 1;
}
}
}
if (d[t] == INF) return false;
flow += a[t];
cost += d[t] * a[t];
int u = t;
while (u != s) {
edges[p[u]].flow += a[t];
edges[p[u]^1].flow -= a[t];
u = edges[p[u]].from;
}
return true;
} int Mincost(int s, int t) {
int flow = 0, cost = 0;
while (spfa(s, t, flow, cost));
return cost;
} }solver;
char str[205][205]; bool check(int x, int y) {
if (x>0 && x<=n && y>0 && y<=m) return 1;
return 0;
}
struct node{
int x;
int y;
int num;
};
node men[N];
node hou[N];
char ma[N][N];
int main() {
while (scanf("%d%d", &n, &m), n&&m) {
solver.init(n*m+1);
for (int i = 1; i <= n; ++i) {
scanf("%s", str[i]+1);
for (int j = 1; j <= m; ++j) {
if (str[i][j]=='H') solver.AddEdge((i-1)*m+j, n*m+1, 1, 0);
if (str[i][j]=='m') solver.AddEdge(0, (i-1)*m+j, 1, 0);
for (int k = 0; k < 4; ++k) {
int nx = i+dx[k], ny = j+dy[k];
if (check(nx, ny)) solver.AddEdge((i-1)*m+j, (nx-1)*m+ny, INF, 1);
}
}
}
printf("%d\n", solver.Mincost(0, n*m+1)); //--------------------------------version2
// int n1=201;
// solver.init(2*n1+1);
// int ansh=n,k2=0;
// int ansm=0,k1=0;
// for(int i=0;i<n;i++){
// scanf("%s", ma[i]);
// for(int j=0;j<m;j++){
// if(ma[i][j]=='m'){//人
// ++ansm;
// men[k1].x=i;
// men[k1].y=j;
// men[k1++].num=ansm;
// solver.AddEdge(0,ansm,1,0);
// }else if(ma[i][j]=='H'){
// ++ansh;
// hou[k2].x=i;
// hou[k2].y=j;
// hou[k2++].num=ansh;
// solver.AddEdge(ansh,2*n1+1,1,0);
// }
// }
// }
// for(int i=0;i<k1;i++){
// for(int j=0;j<k2;j++){
// int disc=abs(men[i].x-hou[j].x)+abs(men[i].y-hou[j].y);
// solver.AddEdge(men[i].num,hou[j].num,1,disc);
// }
// }
// printf("%d\n", solver.Mincost(0, n1*2+1));
}
return 0;
}

POJ-2195(最小费用最大流+MCMF算法)的更多相关文章

  1. poj 2195 最小费用最大流模板

    /*Source Code Problem: 2195 User: HEU_daoguang Memory: 1172K Time: 94MS Language: G++ Result: Accept ...

  2. POJ - 2195 最小费用最大流

    题意:每个人到每个房子一一对应,费用为曼哈顿距离,求最小的费用 题解:单源点汇点最小费用最大流,每个人和房子对于建边 #include<map> #include<set> # ...

  3. POJ-2516(最小费用最大流+MCMF算法)

    Minimum Cost POJ-2516 题意就是有n个商家,有m个供货商,然后有k种商品,题目求的是满足商家的最小花费供货方式. 对于每个种类的商品k,建立一个超级源点和一个超级汇点.每个商家和源 ...

  4. POJ 2516 最小费用最大流

    每一种货物都是独立的,分成k次最小费用最大流即可! 1: /** 2: 因为e ==0 所以 pe[v] pe[v]^1 是两条相对应的边 3: E[pe[v]].c -= aug; E[pe[v]^ ...

  5. poj 3422(最小费用最大流)

    题目链接:http://poj.org/problem?id=3422 思路:求从起点到终点走k次获得的最大值,最小费用最大流的应用:将点权转化为边权,需要拆点,边容量为1,费用为该点的点权,表示该点 ...

  6. 把人都送到房子里的最小花费--最小费用最大流MCMF

    题意:http://acm.hdu.edu.cn/showproblem.php?pid=1533 相邻的容量为inf,费用为1,S到m容量为1,费用为0 ,H到T容量为1,费用为0. 建图跑-最小费 ...

  7. POJ 2135 最小费用最大流 入门题

    Farm Tour Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 19207   Accepted: 7441 Descri ...

  8. POJ 2195 - Going Home - [最小费用最大流][MCMF模板]

    题目链接:http://poj.org/problem?id=2195 Time Limit: 1000MS Memory Limit: 65536K Description On a grid ma ...

  9. poj 2135最小费用最大流

    最小费用最大流问题是经济学和管理学中的一类典型问题.在一个网络中每段路径都有"容量"和"费用"两个限制的条件下,此类问题的研究试图寻找出:流量从A到B,如何选择 ...

随机推荐

  1. Codeforces Round #658 (Div. 2) C1. Prefix Flip (Easy Version) (构造)

    题意:给你两个长度为\(n\)的01串\(s\)和\(t\),可以选择\(s\)的前几位,取反然后反转,保证\(s\)总能通过不超过\(3n\)的操作得到\(t\),输出变换总数,和每次变换的位置. ...

  2. Base64 编码原理

    什么是 Base64 编码 Base64 编码是最常见的编码方式,基于 64 个可打印字符来表示任意二进制数据的方法,是从二进制转换到可见字符的过程. 使用场景 数据加密或签名通过 Base64 转换 ...

  3. K8S(10)配置中心实战-configmap资源

    k8s配置中心实战-configmap资源 目录 k8s配置中心实战-configmap资源 0 configmap前置说明 0.1.1 configmap和secret 0.1.2 怎么使用conf ...

  4. 51nod1459 带权最短路

    1459 迷宫游戏 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 你来到一个迷宫前.该迷宫由若干个房间组成,每个房间都有一个得分,第一次进入这个房间,你就可以得到这个分 ...

  5. CVE-2018-8120 提权

    经验证,诸多版本的Windows系统均存在该漏洞,文末同时附带一份利用该漏洞制作的提权工具,以供学习.经测试该工具支持Win2003 x32/x64.WinXP x32.Win7 x32/x64, W ...

  6. JVM系列(三):JVM创建过程解析

    上两篇中梳理了整个java启动过程中,jvm大致是如何运行的.即厘清了我们认为的jvm的启动过程.但那里面仅为一些大致的东西,比如参数解析,验证,dll加载等等.把最核心的loadJavaVM()交给 ...

  7. Pygame 游戏开发 All In One

    Pygame 游戏开发 All In One Pygame Pygame is a library for digital arts, games, music, making, and a comm ...

  8. vue3 deep dive

    vue3 deep dive vue core vnode vue core render / mount / patch refs https://www.vuemastery.com/course ...

  9. JSDoc in action

    JSDoc in action JSDoc https://jsdoc.app/index.html https://github.com/jsdoc/jsdoc $ npm -g jsdoc $ n ...

  10. egg.js in action

    egg.js in action fullstack https://github.com/eggjs/egg/ cli config router service midlewares HTTP C ...