【NOIP2017提高A组模拟9.17】组合数问题

题目

Description

定义"组合数"S(n,m)代表将n 个不同的元素拆分成m 个非空集合的方案数.

举个例子,将{1,2,3}拆分成2 个集合有({1},{2,3}),({2},{1,3}),({3},{1,2})三种拆分方法.

小猫想知道,如果给定n,m 和k,对于所有的0<=i<=n,0<=j<=min(i,m),有多少对(i,j),满足S(i,j)是k 的倍数.

注意,0 也是k 的倍数,S(0,0)=1,对于i>=1,S(i,0)=0.

Input

从problem.in 种读入数据第一行有两个整数t,k,t 代表该测试点总共有多少组测试数据.接下来t 行,每行两个整数n,m.

Output

输出到文件problem.out 中t 行,每行一个整数代表所有的0<=i<=n,0<=j<=min(i,m),有多少对(i,j),满足S(i,j)是k 的倍数.

Sample Input

输入1:

1 2

3 3

输入2:

2 5

4 5

6 7

Sample Output

输出1:

3

样例说明1:S(1,0),S(2,0),S(3,0)均是2 的倍数

输出2:

4

12

Data Constraint

对于20%的数据,满足n,m<=7,k<=5

对于60%的数据,满足n,m<=100,k<=10

对于每个子任务,都有50%的数据满足t=1

对于100%的数据,满足1<=n<=2000,1<=m<=2000,2<=k<=21,1<=t<=10000

题解

第二类斯特林数

公式:

\(S(i,j)=S(i-1,j-1)+j*S(i-1,j)\)

证明

  1. 当前这个元素新开一个集合,\(S(i-1,j-1)\)
  2. 当前这个元素进入一个原本存在的集合 \(j*S(i-1,j-1)\)

根据加法定理,两者相加就是答案

预处理的同时\(\%k\)

然后用二维前缀和统计0的个数

Code

#include<cstdio>
#include<iostream>
#define ull unsigned long long
using namespace std;
int t,k,k1,n,m,c[2001][2001],s[2001][2001];
int read()
{
int res=0;char ch=getchar();
while (ch<'0'||ch>'9') ch=getchar();
while (ch>='0'&&ch<='9') res=(res<<1)+(res<<3)+(ch-'0'),ch=getchar();
return res;
}
int main()
{
freopen("problem.in","r",stdin);
freopen("problem.out","w",stdout);
t=read();k=read();
c[1][1]=c[0][0]=1;
for (int i=2;i<=2000;++i)
for (int j=1;j<=min(2000,i);++j)
c[i][j]=(c[i-1][j-1]%k+j*c[i-1][j]%k)%k;
for (int i=0;i<=2000;++i)
for (int j=0;j<=i;++j)
if (c[i][j]==0) s[i][j]=1;
for (int i=1;i<=2000;++i)
s[i][0]+=s[i-1][0],s[0][i]+=s[0][i-1];
for (int i=1;i<=2000;++i)
for(int j=1;j<=2000;++j)
s[i][j]+=s[i-1][j]+s[i][j-1]-s[i-1][j-1];
while (t--)
{
n=read();m=read();
printf("%d\n",s[n][m]);
}
fclose(stdin);
fclose(stdout);
return 0;
}

【NOIP2017提高A组模拟9.17】组合数问题的更多相关文章

  1. 【NOIP2017提高A组模拟9.17】信仰是为了虚无之人

    [NOIP2017提高A组模拟9.17]信仰是为了虚无之人 Description Input Output Sample Input 3 3 0 1 1 7 1 1 6 1 3 2 Sample O ...

  2. 【NOIP2017提高A组模拟9.17】猫

    [NOIP2017提高A组模拟9.17]猫 题目 Description 信息组最近猫成灾了! 隔壁物理组也拿猫没办法. 信息组组长只好去请神刀手来帮他们消灭猫.信息组现在共有n 只猫(n 为正整数) ...

  3. JZOJ5373【NOIP2017提高A组模拟9.17】信仰是为了虚无之人

    题目 分析 我们发现,如果[l,r]的异或和为k是真要求,有且仅当不存在[l,i]和[i,r]两个区间的异或和不为k. 我们用带权并查集了维护这些,但是,由于区间不连续,我们将点权移到边上,对于区间[ ...

  4. JZOJ 100029. 【NOIP2017提高A组模拟7.8】陪审团

    100029. [NOIP2017提高A组模拟7.8]陪审团 Time Limits: 1000 ms  Memory Limits: 131072 KB  Detailed Limits   Got ...

  5. JZOJ 5328. 【NOIP2017提高A组模拟8.22】世界线

    5328. [NOIP2017提高A组模拟8.22]世界线 (File IO): input:worldline.in output:worldline.out Time Limits: 1500 m ...

  6. JZOJ 5329. 【NOIP2017提高A组模拟8.22】时间机器

    5329. [NOIP2017提高A组模拟8.22]时间机器 (File IO): input:machine.in output:machine.out Time Limits: 2000 ms M ...

  7. JZOJ 5307. 【NOIP2017提高A组模拟8.18】偷窃 (Standard IO)

    5307. [NOIP2017提高A组模拟8.18]偷窃 (Standard IO) Time Limits: 1000 ms Memory Limits: 262144 KB Description ...

  8. JZOJ 5286. 【NOIP2017提高A组模拟8.16】花花的森林 (Standard IO)

    5286. [NOIP2017提高A组模拟8.16]花花的森林 (Standard IO) Time Limits: 1000 ms Memory Limits: 131072 KB Descript ...

  9. JZOJ 5305. 【NOIP2017提高A组模拟8.18】C (Standard IO)

    5305. [NOIP2017提高A组模拟8.18]C (Standard IO) Time Limits: 1000 ms Memory Limits: 131072 KB Description ...

随机推荐

  1. 843. Guess the Word —— weekly contest 86

    题目链接:https://leetcode.com/problems/guess-the-word/description/ 占坑 据说要用启发式算法,可参考下述答案进行学习:https://leet ...

  2. [python学习手册-笔记]002.python核心数据类型

    python核心数据类型 ❝ 本系列文章是我个人学习<python学习手册(第五版)>的学习笔记,其中大部分内容为该书的总结和个人理解,小部分内容为相关知识点的扩展. 非商业用途转载请注明 ...

  3. 经典c程序100例==91--100

    [程序91] 题目:时间函数举例1 1.程序分析: 2.程序源代码: #include "stdio.h" #include "time.h" void mai ...

  4. 牛客网-C++-2020.9.2

    1. for循环语句能够被改写成(D)语句 A. 复合 B. if C. switch D. while 解析: for循环可以写成while控制循环的次数,同时也可以被改写成do while语句 2 ...

  5. 在 JavaScript 中,我们能为原始类型添加一个属性或方法吗?

    原始类型的方法 JavaScript 允许我们像使用对象一样使用原始类型(字符串,数字等).JavaScript 还提供了这样的调用方法.我们很快就会学习它们,但是首先我们将了解它的工作原理,毕竟原始 ...

  6. 快速熟悉 Oracle AWR 报告解读

    目录 AWR报告简介 AWR报告结构 基本信息 Report Summary Main Report RAC statistics Wait Event Statistics 参考资料 本文面向没有太 ...

  7. linux 图解笔记

  8. My SQL的基本操作(总结)

    My SQL的基本操作(总结) 因为本人目前是学生,前一段时间因为一些原因没有按时更新博客,今天我来总结一下My SQL的基本操作. 一.下载与安装 windows版本MySQL下载地址: http: ...

  9. Metasploit 脚本Web传递(Web Delivery)

    Metasploit 脚本Web传递(Web Delivery)

  10. Linux bash反弹shell原理引起的一点思考

        最近,一起做安全测试的兄弟问我:Linux反弹shell的命令是什么,我毫不犹豫地在笔记中找到发给了他,可是脑海中突然闪过有个疑问,为啥这样能反弹shell呢,用了那么多次却从来没有想过这个问 ...