洛谷-P1439 【模板】最长公共子序列 (DP,离散化)

题意:给两个长度为\(n\)的全排列,求他们的LCS
题解:这题给的数据范围到\(10^5\),用\(O(n^2)\)的LCS模板过不了,但由于给的是两个全排列,他们所含的元素都是一样的,所以,我们以第一个串为模板,第二个串的每一个元素都能对应到第一个串的元素的位置,第二串对映后的最长上升子序列,就是他们的LCS,也就是我们先离散化一遍,然后求一个LIS\((O(n logn))\)即可.
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <stack>
#include <queue>
#include <vector>
#include <map>
#include <set>
#include <unordered_set>
#include <unordered_map>
#define ll long long
#define fi first
#define se second
#define pb push_back
#define me memset
const int N = 1e6 + 10;
const int mod = 1e9 + 7;
using namespace std;
typedef pair<int,int> PII;
typedef pair<long,long> PLL; int n;
int x;
int a[N],b[N];
int mp[N];
int v[N];
int main() {
ios::sync_with_stdio(false);
cin>>n;
for(int i=1;i<=n;++i){
cin>>a[i];
mp[a[i]]=i;
}
for(int i=1;i<=n;++i){
cin>>x;
b[i]=mp[x];
} v[1]=b[1];
int len=1;
for(int i=2;i<=n;++i){
if(b[i]>v[len]) v[++len]=b[i];
else{
int pos=lower_bound(v+1,v+1+len,b[i])-v;
v[pos]=b[i];
}
}
printf("%d\n",len);
return 0;
}
洛谷-P1439 【模板】最长公共子序列 (DP,离散化)的更多相关文章
- 洛谷1439:最长公共子序列(nlogn做法)
洛谷1439:最长公共子序列(nlogn做法) 题目描述: 给定两个序列求最长公共子序列. 这两个序列一定是\(1\)~\(n\)的全排列. 数据范围: \(1\leq n\leq 10^5\) 思路 ...
- 洛谷P2516 [HAOI2010]最长公共子序列(LCS,最短路)
洛谷题目传送门 一进来就看到一个多月前秒了此题的ysn和YCB%%% 最长公共子序列的\(O(n^2)\)的求解,Dalao们想必都很熟悉了吧!不过蒟蒻突然发现,用网格图貌似可以很轻松地理解这个东东? ...
- 洛谷 P2516 [HAOI2010]最长公共子序列
题目传送门 解题思路: 第一问要求最长公共子序列,直接套模板就好了. 第二问要求数量,ans[i][j]表示第一个字符串前i个字符,第二个字符串前j个字符的最长公共子序列的数量 如果f[i][j]是由 ...
- 洛谷P2516 [HAOI2010]最长公共子序列
题目描述 字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字符序列X="x0,x1,-,xm-1",序列Y=& ...
- 【Luogu P1439】最长公共子序列(LCS)
Luogu P1439 令f[i][j]表示a的前i个元素与b的前j个元素的最长公共子序列 可以得到状态转移方程: if (a[i]==b[j]) dp[i][j]=dp[i-1][j-1]+1; d ...
- LCS最长公共子序列~dp学习~4
题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1513 Palindrome Time Limit: 4000/2000 MS (Java/Others ...
- POJ 1458 最长公共子序列(dp)
POJ 1458 最长公共子序列 题目大意:给出两个字符串,求出这样的一 个最长的公共子序列的长度:子序列 中的每个字符都能在两个原串中找到, 而且每个字符的先后顺序和原串中的 先后顺序一致. Sam ...
- 【BZOJ2423】[HAOI2010]最长公共子序列 DP
[BZOJ2423][HAOI2010]最长公共子序列 Description 字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字 ...
- hdu 1159 Common Subsequence(最长公共子序列 DP)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1159 Common Subsequence Time Limit: 2000/1000 MS (Jav ...
随机推荐
- python模块详解 | selenium(持续更新中)
目录: 关于selenium Selenium 安装Selenium 安装浏览器驱动 配置环境变量 selenium方法详解 定位元素 元素操作 浏览器操作 鼠标事件 浏览器事件 设置元素等待 多表单 ...
- 数据库MySQL(带你零基础入门MySQL)
(一)认识数据库 redis默认端口:6379 mysql默认端口:3306 什么是数据库? 数据库的英文单词:data base,简称DB. 数据库实际上就是一个文件集合,是一个存储数据的仓库,本质 ...
- Java开发手册之设计规约
1.谨慎使用继承的方式来进行扩展,优先使用聚合/组合的方式来实现.说明:不得已使用继承的话,必须符合里氏代换原则,此原则说父类能够出现的地方子类一定能够出现,比如,"把钱交出来", ...
- 摆脱 996——GitHub 热点速览 v.21.03
作者:HelloGitHub-小鱼干 Twitter 有位程序员总结了本周的 GitHub 中文程序员的看点:国内程序员日常--考公务员.996.抢茅台.刷算法.整健康码.在本期热点速览里,小鱼干收录 ...
- Table controls and tabstrip controls
本文转载自http://www.cnblogs.com/clsoho/archive/2010/01/21/1653268.html ONTROLS Syntax Forms Declaration ...
- 1、进程管理常用命令和进程ID
常用命令 1. ps (英文全拼:process status)命令用于显示当前进程的状态,类似于 windows 的任务管理器. 详细介绍参照:https://www.runoob.com/linu ...
- Python+Selenium+Unittest实现PO模式web自动化框架(8)
1.main.py模块的功能 最后就是要有一个项目入口,并且是需要加载测试用例集. # --^_^-- coding:utf-8 --^_^-- # @Remark:运行入口 "" ...
- 使用XML作为配置表,WinForm程序读取配置表来动态显示控件
一.首先创建一个XML文件定义以下格式(uName:显示的中文字,uKey:代表控件的Name属性,ukeyValue:代表是否显示) 二.项目中定义一个通用类,来存放读取的值 这三个字段对应XML文 ...
- 浅析Linux启动流程
Linux系统启动流程 Linux 系统的启动,从计算机开机通电自检开始,一直到登陆系统,需要经历多个过程.了解 Linux 的启动过程,有助于了解 Linux 系统的结构,也对系统的排错有很大的帮助 ...
- 自动化接口差异测试-diffy 回归测试 charles rewrite 请求
https://mp.weixin.qq.com/s/vIxbtQtRRqgYCrDy7XTcrA 自动化接口差异测试-diffy Boris 搜狗测试 2018-08-30 自动化接口差异测试- ...