• 题意:给两个长度为\(n\)的全排列,求他们的LCS

  • 题解:这题给的数据范围到\(10^5\),用\(O(n^2)\)的LCS模板过不了,但由于给的是两个全排列,他们所含的元素都是一样的,所以,我们以第一个串为模板,第二个串的每一个元素都能对应到第一个串的元素的位置,第二串对映后的最长上升子序列,就是他们的LCS,也就是我们先离散化一遍,然后求一个LIS\((O(n logn))\)即可.

  • 代码:

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <cmath>
    #include <algorithm>
    #include <stack>
    #include <queue>
    #include <vector>
    #include <map>
    #include <set>
    #include <unordered_set>
    #include <unordered_map>
    #define ll long long
    #define fi first
    #define se second
    #define pb push_back
    #define me memset
    const int N = 1e6 + 10;
    const int mod = 1e9 + 7;
    using namespace std;
    typedef pair<int,int> PII;
    typedef pair<long,long> PLL; int n;
    int x;
    int a[N],b[N];
    int mp[N];
    int v[N];
    int main() {
    ios::sync_with_stdio(false);
    cin>>n;
    for(int i=1;i<=n;++i){
    cin>>a[i];
    mp[a[i]]=i;
    }
    for(int i=1;i<=n;++i){
    cin>>x;
    b[i]=mp[x];
    } v[1]=b[1];
    int len=1;
    for(int i=2;i<=n;++i){
    if(b[i]>v[len]) v[++len]=b[i];
    else{
    int pos=lower_bound(v+1,v+1+len,b[i])-v;
    v[pos]=b[i];
    }
    }
    printf("%d\n",len);
    return 0;
    }

洛谷-P1439 【模板】最长公共子序列 (DP,离散化)的更多相关文章

  1. 洛谷1439:最长公共子序列(nlogn做法)

    洛谷1439:最长公共子序列(nlogn做法) 题目描述: 给定两个序列求最长公共子序列. 这两个序列一定是\(1\)~\(n\)的全排列. 数据范围: \(1\leq n\leq 10^5\) 思路 ...

  2. 洛谷P2516 [HAOI2010]最长公共子序列(LCS,最短路)

    洛谷题目传送门 一进来就看到一个多月前秒了此题的ysn和YCB%%% 最长公共子序列的\(O(n^2)\)的求解,Dalao们想必都很熟悉了吧!不过蒟蒻突然发现,用网格图貌似可以很轻松地理解这个东东? ...

  3. 洛谷 P2516 [HAOI2010]最长公共子序列

    题目传送门 解题思路: 第一问要求最长公共子序列,直接套模板就好了. 第二问要求数量,ans[i][j]表示第一个字符串前i个字符,第二个字符串前j个字符的最长公共子序列的数量 如果f[i][j]是由 ...

  4. 洛谷P2516 [HAOI2010]最长公共子序列

    题目描述 字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字符序列X="x0,x1,-,xm-1",序列Y=& ...

  5. 【Luogu P1439】最长公共子序列(LCS)

    Luogu P1439 令f[i][j]表示a的前i个元素与b的前j个元素的最长公共子序列 可以得到状态转移方程: if (a[i]==b[j]) dp[i][j]=dp[i-1][j-1]+1; d ...

  6. LCS最长公共子序列~dp学习~4

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1513 Palindrome Time Limit: 4000/2000 MS (Java/Others ...

  7. POJ 1458 最长公共子序列(dp)

    POJ 1458 最长公共子序列 题目大意:给出两个字符串,求出这样的一 个最长的公共子序列的长度:子序列 中的每个字符都能在两个原串中找到, 而且每个字符的先后顺序和原串中的 先后顺序一致. Sam ...

  8. 【BZOJ2423】[HAOI2010]最长公共子序列 DP

    [BZOJ2423][HAOI2010]最长公共子序列 Description 字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字 ...

  9. hdu 1159 Common Subsequence(最长公共子序列 DP)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1159 Common Subsequence Time Limit: 2000/1000 MS (Jav ...

随机推荐

  1. Burp suite的系列介绍 (1)

    前言 为了进行Web安全方面的学习,Burp suite是必备的工具之一,我们将会从多个模块进行逐步的学习. Burp suite的应用场景 1.HTTP服务端接口测试. 2.HTTP客户端和HTTP ...

  2. 【Docker】CentOS7 上无网络情况下安装

    自建虚拟机,但是连接不上网络,只能通过下载rpm包进行安装docker 环境:CentOS 7.3.1611 x64 rpm镜像下载地址用的阿里的https://mirrors.aliyun.com/ ...

  3. 【EXPDP/IMPDP】数据泵导入导出遇到目录没有权限问题

    当执行数据泵导出的时候,报了如下错误: ORA-39002: invalid operation ORA-39070: Unable to open the log file. ORA-39087: ...

  4. bash shell数组使用总结

    本文为原创博文,转发请注明原创链接:https://www.cnblogs.com/dingbj/p/10090583.html  数组的概念就不多说了,大家都懂! shell数组分为索引数组和关联数 ...

  5. k8s中教你快速写一条yaml文件

    一条yaml中有很多字段,如果去背这些字段,其实也能背过,但是去写一条yaml,也往往浪费很多的时间,也会出错,其实我们可以用一条命令就能快速来写一段自定义的yaml,工作中去修改相应的yaml也得心 ...

  6. 分布式系统:分布式任务调度xxl-job较深入使用

    目录 系统关键概念介绍 执行器 任务 任务配置项描述 阻塞策略 路由策略 日志问题 客户端日志 服务端日志 框架目前发现的缺点以及存在的问题 xxl-job是一个分布式定时任务调度框架,功能强大,底层 ...

  7. 二本学生拿到腾讯大厂offer的成长记录

    本人迈莫,是在20年以春招实习生的身份进入鹅厂,经过重重波折,最终成为鹅仔一份子.接下来我会以我亲生经历为例,分享一下普通大学的学生也是可以进去大厂,拭目以待!!! 初入大学 惨遭毒打 时间倒回到17 ...

  8. 在ubuntu编写helloworld

    安装vim 打开终端 输入sudo apt-get install vim-gtk 输入登陆密码 等待安装完成 编译C 创建.c文件:vim helloworld.c 编写代码,保存并退出 编译:gc ...

  9. codevs 1344 模拟退火

    1344 线型网络  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamo   题目描述 Description 有 N ( <=20 ) 台 PC 放在机房内 ...

  10. cookie机制、session机制

    会话(Session)跟踪是Web程序中常用的技术,用来跟踪用户的整个会话.常用的会话跟踪技术是Cookie与Session.Cookie通过在客户端记录信息确定用户身份,Session通过在服务器端 ...