• 题意:有\(n\)组数,对于每组数,问是否能找到两个因子\(d_{1},d{2}\),使得\(gcd(d_{1}+d_{2},a_{i}=1)\),如果有,输出它们,否则输出\(-1\).

  • 题解:对于这题,首先我们要推两个gcd的公式:

    ​ 1) $gcd(a,b)=gcd(a+b,b) $.

    ​ 2) 若\(gcd(a,c)=1 \ => gcd(a,bc)=gcd(a,b)\).

    这两个公式应该都很容易证明.

    因此我们推出:若\(gcd(x,y)=1\),则:\(gcd(x+y,xy)=1\).

    所以我们就可以对\(a_{i}\)质因数分解,得到:\(p_{1}^{k1},p_{2}^{k2}.....p_{n}^{kn}\).

    我们令\(d_{1}=p_{1}^{k1}\),\(d_{2}=\frac{a_{i}}{d_{1}}\)即可.

    下面给出公式的证明过程:

  • 代码: (用到了欧拉线性筛)

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <cmath>
    #include <algorithm>
    #include <stack>
    #include <queue>
    #include <vector>
    #include <map>
    #include <set>
    #include <unordered_set>
    #include <unordered_map>
    #define ll long long
    #define fi first
    #define se second
    #define pb push_back
    #define me memset
    const int N = 1e7 + 10;
    const int mod = 1e9 + 7;
    const int INF = 0x3f3f3f3f;
    using namespace std;
    typedef pair<int,int> PII;
    typedef pair<ll,ll> PLL; int n;
    int prime[N];
    int cnt;
    bool st[N];
    int a[N];
    vector<int> v;
    vector<PII> ans; void get_prime(){
    for(int i=2;i<=N;++i){
    if(!st[i]) prime[++cnt]=i;
    for(int j=1;j<=cnt && prime[j]<=n/i;++j){
    st[i*prime[j]]=true;
    if(i%prime[j]==0) break;
    }
    }
    } void divide(int x){
    int tmp=x;
    for(int i=1;i<=cnt;++i){
    if((ll)prime[i]*(ll)prime[i]>(ll)x) break;
    if(x%prime[i]==0){
    int t=1;
    while(x%prime[i]==0){
    x/=prime[i];
    t*=prime[i];
    }
    v.pb(t);
    }
    }
    if(x>1) v.pb(x);
    if(v.size()<2) ans.pb({-1,-1});
    else ans.pb({v[0],tmp/v[0]});
    v.clear();
    } int main() {
    ios::sync_with_stdio(false);cin.tie(0);
    cin>>n;
    for(int i=1;i<=n;++i){
    cin>>a[i];
    }
    get_prime();
    for(int i=1;i<=n;++i){
    divide(a[i]);
    }
    for(auto w:ans) printf("%d ",w.fi);
    printf("\n");
    for(auto w:ans) printf("%d ",w.se); return 0;
    }

Educational Codeforces Round 89 (Rated for Div. 2) D. Two Divisors (数学)的更多相关文章

  1. Educational Codeforces Round 89 (Rated for Div. 2) B. Shuffle(数学/双指针)

    题目链接:https://codeforces.com/contest/1366/problem/B 题意 大小为 $n$ 的数组 $a$,除了 $a_x = 1$,其余 $a_i = 0$,依次给出 ...

  2. Educational Codeforces Round 89 (Rated for Div. 2)D. Two Divisors 线性筛质因子

    题目链接:D:Two Divisors 题意: 给你n个数,对于每一个数vi,你需要找出来它的两个因子d1,d2.这两个因子要保证gcd(d1+d2,vi)==1.输出的时候输出两行,第一行输出每一个 ...

  3. Educational Codeforces Round 89 (Rated for Div. 2) C. Palindromic Paths(贪心)

    题目链接:https://codeforces.com/contest/1366/problem/C 题意 有一个 $n \times m$ 的 $01$迷宫,要使从 $(1,1)$ 到 $(n,m) ...

  4. Educational Codeforces Round 89 (Rated for Div. 2) A. Shovels and Swords(贪心/数学)

    题目链接:https://codeforces.com/contest/1366/problem/A 题意 有两个数 $a$ 和 $b$,每次可以选择从一个数中取 $2$,另一个数中取 $1$,问最多 ...

  5. Educational Codeforces Round 89 (Rated for Div. 2) C Palindromic Paths

    题目链接:Palindromic Paths 题意: 给你一个n行m列的矩阵,这个矩阵被0或者1所填充,你需要从点(1,1)走到点(n,m).这个时候会有很多路径,每一条路径对应一个01串,你可以改变 ...

  6. Educational Codeforces Round 89 (Rated for Div. 2) A Shovels and Swords B、Shuffle

    题目链接:A.Shovels and Swords 题意: 你需要一个木棍和两个钻石可以造出来一把剑 你需要两个木棍和一个钻石可以造出来一把铁锹 你现在有a个木棍,b个钻石,问你最多可以造出来几件东西 ...

  7. Educational Codeforces Round 89 (Rated for Div. 2) A. Shovels and Swords (贪心)

    题意:你有\(a\)个树枝和\(b\)个钻石,\(2\)个树枝和\(1\)个钻石能造一个铁铲,\(1\)个树枝和\(2\)个钻石能造一把剑,问最多能造多少铲子和剑. 题解:如果\(a\le b\),若 ...

  8. Educational Codeforces Round 89 (Rated for Div. 2) C. Palindromic Paths (思维)

    题意:有一个\(n\)x\(m\)的矩阵,从\((1,1)\)出发走到\((n,m)\),问最少修改多少个数,使得所有路径上的数对应相等(e.g:\((1,2)\)和\((n-1,m)\)或\((2, ...

  9. Educational Codeforces Round 89 (Rated for Div. 2) B. Shuffle (数学,区间)

    题意:有长为\(n\)的排列,其中\(x\)位置上的数为\(1\),其余位置全为\(0\),询问\(m\)次,每次询问一个区间,在这个区间内可以交换任意两个位置上的数,问\(1\)最后出现在不同位置的 ...

随机推荐

  1. oracle优化求生指南脚本记录

    1.查找未使用索引 /* Formatted on 2020/5/12 下午 03:32:39 (QP5 v5.163.1008.3004) */ WITH IN_PLAN_OBJECTS AS (S ...

  2. [Usaco2007 Jan]Balanced Lineup 飞盘比赛

    题目描述 每天,农夫 John 的N(1 <= N <= 50,000)头牛总是按同一序列排队. 有一天, John 决定让一些牛们玩一场飞盘比赛. 他准备找一群在对列中为置连续的牛来进行 ...

  3. 细数JS中实用且强大的操作符&运算符

    目录 1,前言 2,代码+应用 2.1,短路运算符 || 2.2,短路运算符 && 2.3,零合并操作符 ?? 2.4,可选链操作符 ?. 2.5,位运算符 & 和 | 2.6 ...

  4. Linq.Expressions扩展ExpressionExtension

    手上有一个以前项目用到的.NET工具类封装的DLL. 正好又想试一下动态LAMBDA表达式,用.NET Reflector看一下源码. public static class ExpressionEx ...

  5. pycharm2021永久激活

    Pycharm破解版地址: 链接: https://pan.baidu.com/s/1dEkzKRFMaeNjWF4h7y2TdQ 提取码: eqr3  Anaconda地址:版本是python3.6 ...

  6. 你真的了解Android系统启动流程吗?Android高级工程师必看系列,已开源

    前言 从毕业到现在面试也就那么几家公司,单前几次都比较顺利,在面到第三家时都给到了我offer!前面两次找工作,没考虑到以后需要什么,自己的对未来的规划是什么,只要有份工作,工资符合自己的要求就行!所 ...

  7. H3C防火墙开启区域间互访

    配置ip和路由以及将端口放至Untrust之后,外网还是不通,需要以下命令 interzone policy default by-priority 或者下面: security-zone intra ...

  8. Covering Indexes in MySQL, PostgreSQL, and MongoDB

    Covering Indexes in MySQL, PostgreSQL, and MongoDB - Orange Matter https://orangematter.solarwinds.c ...

  9. pywin32 pywin32 docx文档转html页面 word doc docx 提取文字 图片 html 结构

    https://blog.csdn.net/X21214054/article/details/78873338# python docx文档转html页面 - 程序猿tx - 博客园 https:/ ...

  10. VMware vCenter 6.0 安装及群集配置介绍(转载)

    转载自http://blog.51cto.com/wzlinux/2094598 一.介绍 VMware vCenter Server 提供了一个可伸缩.可扩展的平台,为虚拟化管理奠定了基础.可集中管 ...