• 原题如下:

    Georgia and Bob
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 12712   Accepted: 4262

    Description

    Georgia and Bob decide to play a self-invented game. They draw a row of grids on paper, number the grids from left to right by 1, 2, 3, ..., and place N chessmen on different grids, as shown in the following figure for example: 

    Georgia and Bob move the chessmen in turn. Every time a player will choose a chessman, and move it to the left without going over any other chessmen or across the left edge. The player can freely choose number of steps the chessman moves, with the constraint that the chessman must be moved at least ONE step and one grid can at most contains ONE single chessman. The player who cannot make a move loses the game.

    Georgia always plays first since "Lady first". Suppose that Georgia and Bob both do their best in the game, i.e., if one of them knows a way to win the game, he or she will be able to carry it out.

    Given the initial positions of the n chessmen, can you predict who will finally win the game?

    Input

    The first line of the input contains a single integer T (1 <= T <= 20), the number of test cases. Then T cases follow. Each test case contains two lines. The first line consists of one integer N (1 <= N <= 1000), indicating the number of chessmen. The second line contains N different integers P1, P2 ... Pn (1 <= Pi <= 10000), which are the initial positions of the n chessmen.

    Output

    For each test case, prints a single line, "Georgia will win", if Georgia will win the game; "Bob will win", if Bob will win the game; otherwise 'Not sure'.

    Sample Input

    2
    3
    1 2 3
    8
    1 5 6 7 9 12 14 17

    Sample Output

    Bob will win
    Georgia will win
  • 题解:如果将棋子两两成对当成整体来考虑,就可以把这个游戏转为Nim游戏。如果棋子个数为偶数,把棋子从前往后两两组成一对,可以将每对棋子看成Nim中的一堆石子,石子的个数等于两个棋子之间的间隔。将右边的棋子向左移就相当于从Nim的石子堆中取走石子,将左边的棋子向左移,石子的数量增加了,这和Nim不同,但即便对手增加了石子的数量,只要将所加部分减回去就回到了原来的状态。因此,该游戏的胜负状态和所转移成的Nim的胜负状态一致。
  • 代码:
     #include<cstdio>
    #include<algorithm> using namespace std; const int MAX_N=;
    int T, N, P[MAX_N]; int main()
    {
    scanf("%d", &T);
    while (T>)
    {
    T--;
    scanf("%d", &N);
    for (int i=; i<N; i++)
    {
    scanf("%d", &P[i]);
    }
    if (N%==) P[N++]=;
    sort(P, P+N);
    int x=;
    for (int i=; i+<N; i+=)
    {
    x ^= (P[i+]-P[i]-);
    }
    if (x==) puts("Bob will win");
    else puts("Georgia will win");
    }
    }

Georgia and Bob(POJ 1704)的更多相关文章

  1. Georgia and Bob POJ - 1704 阶梯Nim

    $ \color{#0066ff}{ 题目描述 }$ Georgia and Bob decide to play a self-invented game. They draw a row of g ...

  2. poj 1704 Georgia and Bob(阶梯博弈)

    Georgia and Bob Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9363   Accepted: 3055 D ...

  3. 【POJ】【1704】Georgia and Bob

    组合游戏 Nim游戏的一个变形 题解请看金海峰的博客 以下为引用: 分析:我们把棋子按位置升序排列后,从后往前把他们两两绑定成一对.如果总个数是奇数,就把最前面一个和边界(位置为0)绑定. 在同一对棋 ...

  4. POJ 1704 Georgia and Bob(阶梯博弈+证明)

    POJ 1704 题目链接 关于阶梯博弈有如下定理: 将所有奇数阶梯看作n堆石头,做Nim,将石头从奇数堆移动到偶数堆看作取走石头,同样地,异或值不为0(利己态)时,先手必胜. 定理证明看此博:htt ...

  5. 【POJ】1704 Georgia and Bob(Staircase Nim)

    Description Georgia and Bob decide to play a self-invented game. They draw a row of grids on paper, ...

  6. 【poj 1704】Georgia and Bob

    Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 9776 Accepted: 3222 Description Georgia a ...

  7. poj 1704 Georgia and Bob(阶梯博弈)

    Georgia and Bob Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8656   Accepted: 2751 D ...

  8. POJ 1704 Georgia and Bob(阶梯Nim博弈)

    Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 11357   Accepted: 3749 Description Geor ...

  9. [原博客] POJ 1704 Georgia and Bob

    题目链接题意:如图,Georgia和Bob在玩游戏.一个无限长的棋盘上有N个旗子,第i个棋子的位置可以用Pi表示.现在Georgia先走.每个人每一次可以把一枚棋子向左移动任意个格子,但是不能超越其他 ...

随机推荐

  1. C#LeetCode刷题-链表

    链表篇 # 题名 刷题 通过率 难度 2 两数相加   29.0% 中等 19 删除链表的倒数第N个节点   29.4% 中等 21 合并两个有序链表 C#LeetCode刷题之#21-合并两个有序链 ...

  2. Vue Vue-loader / VueLoaderPlugin / Webpack

    在不用VueCli创建项目的时候,手写引入vue的时候,配置webpack的时候发现了这个问题 webpack vue-loader was used without the correspondin ...

  3. golang 的 string包

    前言 不做文字搬运工,多做思路整理 就是为了能速览标准库,只整理我自己看过的...... 注意!!!!!!!!!! 单词都是连着的,我是为了看着方便.理解方便才分开的 1.string 中文文档 [英 ...

  4. Java学习书籍与社区

    编码规范:<阿里巴巴Java开发手册> 技术架构:<大型网站技术架构核心原理与案例分析>---李智慧 Spring架构与设计原理解析:<Spring技术内幕深入解析Spr ...

  5. 微软看上的Rust 语言,安全性真的很可靠吗

    摘要:近几年,Rust语言以极快的增长速度获得了大量关注.其特点是在保证高安全性的同时,获得不输C/C++的性能.在Rust被很多项目使用以后,其实际安全性表现到底如何呢? 近几年,Rust语言以极快 ...

  6. PythonCrashCourse 第五章习题

    5.1编写一系列条件测试;将每个测试以及你对其结果的预测和实际结果都打印出来.你编写的代码应类似于下面这样: car = 'subaru' print("Is car == 'subaru' ...

  7. PythonCrashCourse 第二章习题

    2.3 个性化消息:将用户的姓名存到一个变量中,并向该用户显示一条消息.显示的消息应非常简单,如"Hello Eric, would you like to learn some Pytho ...

  8. Java mysql数据库连接Demo1

    public class MysqlUtil { /** * 链接数据库 */ /** * 方法一: * 加载驱动的方法不止一种,但这种最常用 */ public static Connection ...

  9. 你怎么改造和重新设计一个ATM银行自动取款机

  10. kubectl 安装

    下载kubectl二进制文件curl -LO https://storage.googleapis.com/kubernetes-release/release/v1.10.0/bin/linux/a ...