http://acm.hdu.edu.cn/showproblem.php?pid=5419

题意

n个物品,标号1-n,物品i有权值wi。现在有m个区间[l,r],从中任意选三个区间i,j,k,求物品编号在区间[ max{li,lj,lk},min{ri,rj,rk} ]的权值和,问总期望是多少。

分析

选择区间的总情况数为C(m,3)=m*(m-1)*(m-2)/6。对于物品,其存在贡献的地方一定是包含它的区间,那么先求出包含每个物品的区间数,用区间覆盖的思想,假设有num个区间包含权值为w的物品,那么此时它的总贡献就是w*C(num,3),只有三个都包含的同时选到才有效。注意使用long long

#include<iostream>
#include<cmath>
#include<cstring>
#include<queue>
#include<vector>
#include<cstdio>
#include<algorithm>
#include<map>
#include<set>
#define rep(i,e) for(int i=0;i<(e);i++)
#define rep1(i,e) for(int i=1;i<=(e);i++)
#define repx(i,x,e) for(int i=(x);i<=(e);i++)
#define X first
#define Y second
#define PB push_back
#define MP make_pair
#define mset(var,val) memset(var,val,sizeof(var))
#define scd(a) scanf("%d",&a)
#define scdd(a,b) scanf("%d%d",&a,&b)
#define scddd(a,b,c) scanf("%d%d%d",&a,&b,&c)
#define pd(a) printf("%d\n",a)
#define scl(a) scanf("%lld",&a)
#define scll(a,b) scanf("%lld%lld",&a,&b)
#define sclll(a,b,c) scanf("%lld%lld%lld",&a,&b,&c)
#define IOS ios::sync_with_stdio(false);cin.tie(0) using namespace std;
typedef long long ll;
template <class T>
void test(T a){cout<<a<<endl;}
template <class T,class T2>
void test(T a,T2 b){cout<<a<<" "<<b<<endl;}
template <class T,class T2,class T3>
void test(T a,T2 b,T3 c){cout<<a<<" "<<b<<" "<<c<<endl;}
const int N = 1e6+;
//const int MAXN = 210;
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f3fll;
const ll mod = ;
int T;
void testcase(){
printf("Case #%d: ",++T);
}
const int MAXN = 1e5+;
const int MAXM = ; ll gcd(ll a,ll b){
return b==?a:gcd(b,a%b);
}
ll C(ll n){
return n*(n-)*(n-)/;
}
int qu[MAXN],w[MAXN];
int main() {
#ifdef LOCAL
freopen("in.txt","r",stdin);
#endif // LOCAL
int t,n,m,l,r;
scd(t);
while(t--){
mset(qu,);
scdd(n,m);
for(int i=;i<=n;i++) scd(w[i]);
for(int i=;i<m;i++){
scdd(l,r);
qu[l]++,qu[r+]--;
}
ll fenzi=;
int cnt=;
for(int i=;i<=n;i++){
cnt+=qu[i];
if(cnt>=) fenzi+=(w[i]*C(cnt));
}
ll fenmu=C(m); if(fenzi==||fenmu==){
puts("");
continue;
}
ll d=gcd(fenmu,fenzi);
if(d>){
fenzi/=d;
fenmu/=d; }
cout<<fenzi;
if(fenmu==) cout<<endl;
else cout<<"/"<<fenmu<<endl;
}
return ;
}

HDU - 5419 Victor and Toys(组合计数)的更多相关文章

  1. HDU 5419——Victor and Toys——————【线段树|差分前缀和】

    Victor and Toys Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/131072 K (Java/Others ...

  2. HDOJ 5419 Victor and Toys 树状数组

    分母是一定的C(m,3) 树状数组求每一个数能够在那些段中出现,若x出如今了s段中,分子加上w[x]*C(s,3) Victor and Toys Time Limit: 2000/1000 MS ( ...

  3. HDU.4903.The only survival(组合 计数)

    题目链接 惊了 \(Description\) 给定\(n,k,L\),表示,有一张\(n\)个点的无向完全图,每条边的边权在\([1,L]\)之间.求有多少张无向完全图满足,\(1\)到\(n\)的 ...

  4. 【HDOJ 5419】 Victor and Toys (排列组合)

    [HDOJ 5419] Victor and Toys n个玩具 m个区间 每一个玩具有一个beauty值 问任选三个区间 三区间的MINleft~MAXright的和的期望值 预处理一个数组 存放每 ...

  5. HDU4609 FFT+组合计数

    HDU4609 FFT+组合计数 传送门:http://acm.hdu.edu.cn/showproblem.php?pid=4609 题意: 找出n根木棍中取出三根木棍可以组成三角形的概率 题解: ...

  6. ACM: HDU 5418 Victor and World - Floyd算法+dp状态压缩

    HDU 5418 Victor and World Time Limit:2000MS     Memory Limit:131072KB     64bit IO Format:%I64d & ...

  7. bzoj 2281 [Sdoi2011]黑白棋(博弈+组合计数)

    黑白棋(game) [问题描述] 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色 ...

  8. BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]

    4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...

  9. BZOJ 4555: [Tjoi2016&Heoi2016]求和 [FFT 组合计数 容斥原理]

    4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...

随机推荐

  1. PAT 1002 写出这个数

    https://pintia.cn/problem-sets/994805260223102976/problems/994805324509200384 读入一个自然数n,计算其各位数字之和,用汉语 ...

  2. Windows 版本下 Oracle12.1.0.2 升级Oracle12.2.0.1的步骤

    oracle12.1.0.1 2013年发布的产品 2014年左右发布12.1.0.2 2016年底发布了 oracle12.2.0.1 经常有人会安装了最早的oracle版本,然后需要升级到最新的o ...

  3. ES6 Set & Map

    ES6 Set & Map OK ES6 Map https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Globa ...

  4. 微信小程序开发3之保存数据及页面跳转

    第一  保存本地数据 1.异步保存本地数据 wx.setStorage({ key:keyStr, data:dataStr, success: function(e){}, fail: functi ...

  5. MSSQL约束【转】

    为了减少数据冗余和使数据库内容变的严谨,MSSQL数据库里引入了关系和约束.我们平时做一些小程序,需要使用到MSSQL数据库的时候大多没有严格去规划一下数据库的设计,但是真正开发的时候需要你严格的进行 ...

  6. Lodop在页面获取打印机列表 选择打印机预览

    利用GET_PRINTER_COUNT,获取打印机个数,然后用GET_PRINTER_NAME(intPrinterIndex);循环获取打印机名称,添加到list列表里,可以让用户在页面就选择打印机 ...

  7. caffe实现多任务学习

    Github: https://github.com/Haiyang21/Caffe_MultiLabel_Classification Blogs  1. 采用多label的lmdb+Slice L ...

  8. BZOJ5206 JSOI2017原力(三元环计数)

    首先将完全相同的边的权值累加.考虑这样一种trick:给边确定一个方向,由度数小的连向度数大的,若度数相同则由编号小的连向编号大的.这样显然会得到一个DAG.那么原图的三元环中就一定有且仅有一个点有两 ...

  9. ssm 整合 redis(进阶教程)

    最后我建议大家使用 Spring StringRedisTemplate 配置,参阅: http://blog.csdn.net/hanjun0612/article/details/78131333 ...

  10. MT【58】反演圆和极线极点和谐统一

    解答:如图 评:1.反演圆及其性质介绍: 评2:此题的源头是1995年全国卷压轴题,这里用极线极点的相关性质也可以处理: 注:用相关点法很容易得到轨迹.