hdu 6185 递推+【矩阵快速幂】
<题目链接>
<转载于 >>> >
题目大意:
让你用1*2规格的地毯去铺4*n规格的地面,告诉你n,问有多少种不同的方案使得地面恰好被铺满且地毯不重叠。答案对1000000007取模。
解题分析:
看到题目所给n的数据这么大,就知道肯定存在递推公式,至于递推公式的具体的分析过程 >>>大牛博客。求出递推公式后,由于数据太大,所以我们利用矩阵快速幂来加速。当然,如果比赛的时候想不到递推公式,我们也可以通过搜素得到前面的几组数据,然后在通过高斯消元来得到符合这些数据的公式的通解,最后再利用矩阵快速幂来求解。
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
#define LL long long
const int mod=;
struct matrix
{
LL x[][];
};
matrix mutimatrix(matrix a,matrix b)
{
matrix temp;
memset(temp.x,,sizeof(temp.x));
for(int i=;i<;i++)
for(int j=;j<;j++)
for(int k=;k<;k++)
{
temp.x[i][j]+=a.x[i][k]*b.x[k][j];
temp.x[i][j]%=mod;
}
return temp;
} matrix k_powmatrix(matrix a,LL n)//矩阵快速幂
{
matrix temp;
memset(temp.x,,sizeof(temp.x));
for(int i=;i<;i++)
temp.x[i][i]=; while(n)
{
if(n&)
temp=mutimatrix(temp,a); a=mutimatrix(a,a);
n>>=;
}
return temp;
} int main()
{
LL n;
while(scanf("%lld",&n)!=EOF)
{
//前面四个手算下
if(n==)
{
printf("1\n");
continue;
}
if(n==)
{
printf("5\n");
continue;
}
if(n==)
{
printf("11\n");
continue;
}
if(n==)
{
printf("36\n");
continue;
} matrix st;
memset(st.x,,sizeof(st.x));
st.x[][]=;
st.x[][]=;
st.x[][]=;
st.x[][]=-; st.x[][]=;
st.x[][]=;
st.x[][]=; matrix init;//初始矩阵
memset(init.x,,sizeof(init.x)); init.x[][]=;
init.x[][]=;
init.x[][]=;
init.x[][]=; st=k_powmatrix(st,n-);//经过n-4次相乘
st=mutimatrix(init,st);//然后再乘上初始矩阵 printf("%lld\n",(st.x[][]+mod)%mod);
}
return ;
}
2018-08-09
hdu 6185 递推+【矩阵快速幂】的更多相关文章
- hdu 6185 递推+矩阵快速幂
思路:考虑全部铺满时,前2列的放法.有如下5种情况:(转自http://blog.csdn.net/elbadaernu/article/details/77825979 写的很详细 膜一下) 假设 ...
- hdu 2604 递推 矩阵快速幂
HDU 2604 Queuing (递推+矩阵快速幂) 这位作者讲的不错,可以看看他的 #include <cstdio> #include <iostream> #inclu ...
- HDU 2842 (递推+矩阵快速幂)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2842 题目大意:棒子上套环.第i个环能拿下的条件是:第i-1个环在棒子上,前i-2个环不在棒子上.每个 ...
- Recursive sequence HDU - 5950 (递推 矩阵快速幂优化)
题目链接 F[1] = a, F[2] = b, F[i] = 2 * F[i-2] + F[i-1] + i ^ 4, (i >= 3) 现在要求F[N] 类似于斐波那契数列的递推式子吧, 但 ...
- HDU Queuing(递推+矩阵快速幂)
Queuing Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
- HDU 5950 Recursive sequence 【递推+矩阵快速幂】 (2016ACM/ICPC亚洲区沈阳站)
Recursive sequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Other ...
- HDU - 6185 Covering(暴搜+递推+矩阵快速幂)
Covering Bob's school has a big playground, boys and girls always play games here after school. To p ...
- [hdu 2604] Queuing 递推 矩阵快速幂
Problem Description Queues and Priority Queues are data structures which are known to most computer ...
- HDU6030 Happy Necklace(递推+矩阵快速幂)
传送门:点我 Little Q wants to buy a necklace for his girlfriend. Necklaces are single strings composed of ...
- 五校联考R1 Day1T3 平面图planar(递推 矩阵快速幂)
题目链接 我们可以把棱柱拆成有\(n\)条高的矩形,尝试递推. 在计算的过程中,第\(i\)列(\(i\neq n\))只与\(i-1\)列有关,称\(i-1\)列的上面/下面为左上/左下,第\(i\ ...
随机推荐
- rest framework错误笔记——AssertionError: Cannot apply DjangoModelPermissionsOrAnonReadOnly on a view that does not set `.queryset` or have a `.get_queryset()` method.
用到@api_view装饰器时,访问路由查看api数据时,报错: AssertionError: Cannot apply DjangoModelPermissionsOrAnonReadOnly o ...
- Python2和Python3中print的不同点
在Python2和Python3中都提供print()方法来打印信息,但两个版本间的print稍微有差异 主要体现在以下几个方面: 1.python3中print是一个内置函数,有多个参数,而pyth ...
- Linux命令行与shell脚本编程大全.第3版(文字版) 超清文字-非扫描版 [免积分、免登录]
此处免费下载,无需账号,无需登录,无需积分.收集自互联网,侵权通知删除. 点击下载:Linux命令行与shell脚本编程大全.第3版 (大小:约22M)
- android当前网络连接类型判断
package net.nyist.netState; import android.content.Context; import android.net.ConnectivityManager; ...
- 【vim】缩写 :ab [缩写] [要替换的文字]
一个很可能是最令人印象深刻的窍门是你可以在 Vim 中定义缩写,它可以实时地把你输入的东西替换为另外的东西.语法格式如下: :ab [缩写] [要替换的文字] 一个通用的例子是: :ab asap a ...
- HTML学习笔记06-连接
HTML超链接 HTML使用标签<a>来设置文本超链接. 超链接可以是文字,也可以是图片,点击这些内容跳转到新的文档或当前文档的某个部分 代码类似这样: <a href=" ...
- WM8960音频播放
第一节 音频播放原理首先需要申明一下,本章的代码来自网络,参考了亚嵌教育李明老师(论坛ID:limingth)的帖子: http://www.arm9home.net/read.php?tid=205 ...
- 一台电脑,两个及多个git账号配置
1. 生成两[三]个ssh公钥私钥 方法参照:http://www.cnblogs.com/fanbi/p/7772812.html第三步骤 假定其中一个是id_rsa, 另一个时id_rsa_two ...
- 【python】多线程queue导致的死锁问题
写了个多线程的python脚本,结果居然死锁了.调试了一整天才找到原因,是我使用queue的错误导致的. 为了说明问题,下面是一个简化版的代码.注意,这个代码是错的,后面会说原因和解决办法. impo ...
- ubuntu 电源管理
https://www.cnblogs.com/sky-heaven/p/4561374.html?tdsourcetag=s_pcqq_aiomsg 挂起命令 echo mem > /sys ...