传送门

题意:\(n\)个位置,每个位置有价值\(v_i\)和重量\(p_i\),要选出一些位置,如果要选位置\(i\),那么前面选的重量之和要为\(l_i\),后面选的重量之和要为\(r_i\),求一个方案使得价值和最大

这个限制很舒服,可以设\(f_i\)为从前面开始选,选第\(i\)个的最大价值,转移枚举前面的\(j\),如果能从\(j\)转移过来,根据条件,要求\(l_i=l_j+p_i\&\&r_i=r_j-p_i\),记个转移前缀就可以输出方案了

但是这样还不优,我们可以发现对于一个\(i\),只有\(l_j+p_j+r_j=l_i+p_i+r_i\)的\(j\)能够转移过来,于是可以把所有\(l_i+p_i+r_i\)相等的放在一组,每一组里,记\(f_k\)为前缀重量为\(k\)的最大价值,转移从前往后枚举\(i\),从\(f_{l_i}\)向\(f_{l_i+p_i}\)转移,这一组的答案应为\(f_{l_i+p_i+r_i}\)

代码贼丑,轻\(\mathfrak{D}\)qwq

#include<bits/stdc++.h>
#define il inline
#define re register
#define LL long long
#define ull unsigned long long
#define db double
#define eps (1e-7) using namespace std;
const int N=200000+10,M=3000000+10;
il LL rd()
{
LL x=0,w=1;char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
int f[M],hd[M],nt[N];
int n,a[N][4],ma;
int st[N],an[N],tt=0,pre[N],g[M]; int main()
{
n=rd();
for(int i=1;i<=n;i++)
{
a[i][0]=rd(),a[i][1]=rd(),a[i][2]=rd(),a[i][3]=rd();
int pp=a[i][1]+a[i][2]+a[i][3];
ma=max(ma,pp);
nt[i]=hd[pp],hd[pp]=i;
}
memset(f,-63,sizeof(f));
f[0]=0;
int ii=-1,ans=0,inf=f[1];
for(int h=0;h<=ma;h++)
{
if(!hd[h]) continue;
int st[N],tt=0;
for(int i=hd[h];i;i=nt[i]) st[++tt]=i;
for(int i=tt;i>=1;i--) f[a[st[i]][1]+a[st[i]][2]]=max(f[a[st[i]][1]+a[st[i]][2]],f[a[st[i]][2]]+a[st[i]][0]);
if(ans<f[h]) ans=f[h],ii=h;
for(int i=tt;i>=1;i--) f[a[st[i]][1]+a[st[i]][2]]=inf;
}
//printf("%d\n",ans);
if(ii>=0)
{
for(int i=hd[ii];i;i=nt[i]) st[++tt]=i;
for(int i=tt;i>=1;i--)
if(f[a[st[i]][1]+a[st[i]][2]]<f[a[st[i]][2]]+a[st[i]][0])
f[a[st[i]][1]+a[st[i]][2]]=f[a[st[i]][2]]+a[st[i]][0],pre[st[i]]=g[a[st[i]][2]],g[a[st[i]][1]+a[st[i]][2]]=st[i];
tt=0;
int nw=g[ii];
while(nw)
{
an[++tt]=nw,nw=pre[nw];
}
printf("%d\n",tt);
for(int i=tt;i>=1;i--) printf("%d ",an[i]);
}
else puts("0");
return 0;
}

CF28D Don't fear, DravDe is kind的更多相关文章

  1. CF28D Don't fear, DravDe is kind 背包

    题目传送门:http://codeforces.com/problemset/problem/28/D 题意:给你$N$个物品,每个物品有其价格$P_i$,之前必须要买的物品价格和$L_i$,之后必须 ...

  2. 【神仙题】【CF28D】 Don't fear, DravDe is kind

    传送门 Description 一个有N辆卡车的车队从城市Z驶向城市3,来到了一条叫做"恐惧隧道"的隧道.在卡车司机中,有传言说怪物DravDe在那条隧道里搜寻司机.有些司机害怕先 ...

  3. CodeForces 28D Don&#39;t fear, DravDe is kind dp

    主题链接:点击打开链接 为了让球队后,删除是合法的.也就是说,对于每一个车辆, l+r+c 一样,按l+r+c分类. 然后dp一下. #include <cstdio> #include ...

  4. [Codeforces 28D] Do not fear,DravDe is kind

    Brief Intro: 对于四元组(v,c,l,r),求其子序列中v最大的和,并使其满足: 1.Ci+Li+Ri相同 2.L1=0,Rn=0 3.Li=Sigma(C1...Ci-1) Soluti ...

  5. codeforces 28D(dp)

    D. Don't fear, DravDe is kind time limit per test 2 seconds memory limit per test 256 megabytes inpu ...

  6. 英语演讲稿——Get Along with Fear

    Hi. My name is Zhang Meng. I’m an engineer at Keysight. Today I’m not going to introduce my birthpla ...

  7. TED #05# How we can face the future without fear, together

    Rabbi Lord Jonathan Sacks: How we can face the future without fear, together 1. what was it like bei ...

  8. Codeforces Gym100812 L. Knights without Fear and Reproach-扩展欧几里得(exgcd)

    补一篇以前的扩展欧几里得的题,发现以前写错了竟然也过了,可能数据水??? 这个题还是很有意思的,和队友吵了两天,一边吵一边发现问题??? L. Knights without Fear and Rep ...

  9. Fear No More歌词

      "Fear No More"   Every anxious thought that steals my breath It's a heavy weight upon my ...

随机推荐

  1. Delphi编程中动态菜单要点归纳

      一.创建菜单并添加项目 在设计程序时,有时需要动态创建菜单, 通常使用以下的语句: PopupMenu1 := TPopupMenu.Create(Self);  Item := TMenuIte ...

  2. 荣耀实锤Magic2或将助力AI,再次带动成长?

    临近年底,热闹了一年的手机圈纷纷偃旗息鼓,准备为明年3月的新品发力.然而今天(12月7日),恰逢节气大雪,@荣耀手机 在微博发布了一张预热海报,随后荣耀总裁赵明转发这条微博表示「关于技术,真的有很多话 ...

  3. Spring各个jar包的作用

    Spring AOP:Spring的面向切面编程,提供AOP(面向切面编程)的实现 Spring Aspects:Spring提供的对AspectJ框架的整合Spring Beans:Spring I ...

  4. BZOJ3417[Poi2013]Tales of seafaring——BFS

    题目描述 Young Bytensson loves to hang out in the port tavern, where he often listens to the sea dogs te ...

  5. BZOJ1127 POI2008KUP(悬线法)

    首先显然地,如果某个格子的权值超过2k,其一定不在答案之中:如果在[k,2k]中,其自身就可以作为答案.那么现在我们只需要考虑所选权值都小于k的情况. 可以发现一个结论:若存在一个权值都小于k的矩阵其 ...

  6. BZOJ4455 ZJOI2016小星星(容斥原理+树形dp)

    相当于给树上的每个点分配一个编号使父亲和儿子间都有连边. 于是可以考虑树形dp:设f[i][j][k]为i号点的编号为j,其子树中编号集合为k的方案数.转移显然.然而复杂度3n·n3左右,具体我也不知 ...

  7. Shebang(#!)[转]

    原博文 使用Linux或者unix系统的同学可能都对#!这个符号并不陌生,但是你真的了解它吗? 首先,这个符号(#!)的名称,叫做"Shebang"或者"Sha-bang ...

  8. 【BZOJ4830】[HNOI2017]抛硬币(组合计数,拓展卢卡斯定理)

    [BZOJ4830][HNOI2017]抛硬币(组合计数,拓展卢卡斯定理) 题面 BZOJ 洛谷 题解 暴力是啥? 枚举\(A\)的次数和\(B\)的次数,然后直接组合数算就好了:\(\display ...

  9. [hgoi#2019/2/18]比较水

    T1--调换纸牌(card) Alex有 n张纸牌,每张纸牌上都有一个值ai,Alex把这些纸牌排成一排,希望将纸牌按值从小到大的顺序排好.现在他把这个任务交给你,你只能进行一种操作:选中一张牌,然后 ...

  10. 【uoj207】 共价大爷游长沙

    http://uoj.ac/problem/207 (题目链接) 题意 给出一棵无根树,4种操作:在路径集合中加入一条路径,在路径集合中删除一条路径,删一条边加一条边,查询一条边是否被集合中所有路径经 ...