Medium!

题目描述:

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。

问总共有多少条不同的路径?

例如,上图是一个7 x 3 的网格。有多少可能的路径?

说明:m 和 的值均不超过 100。

示例 1:

输入: m = 3, n = 2
输出: 3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向右 -> 向下
2. 向右 -> 向下 -> 向右
3. 向下 -> 向右 -> 向右

示例 2:

输入: m = 7, n = 3
输出: 28

解题思路:

这道题是每次可以向下走或者向右走,求到达最右下角的所有不同走法的个数。我们需要用动态规划Dynamic Programming来解,我们可以维护一个二维数组dp,其中dp[i][j]表示到当前位置不同的走法的个数,然后可以得到递推式为: dp[i][j] = dp[i - 1][j] + dp[i][j - 1],这里为了节省空间,我们使用一维数组dp,一行一行的刷新也可以。

C++解法一:

 // DP
class Solution {
public:
int uniquePaths(int m, int n) {
vector<int> dp(n, 1);
for (int i = 1; i < m; ++i) {
for (int j = 1; j < n; ++j) {
dp[j] += dp[j - 1];
}
}
return dp[n - 1];
}
};

其实还有另一种很数学的解法,参见https://blog.csdn.net/linhuanmars/article/details/22126357

实际相当于机器人总共走了m + n - 2步,其中m - 1步向下走,n - 1步向右走,那么总共不同的方法个数就相当于在步数里面m - 1和n - 1中较小的那个数的取法,实际上是一道组合数的问题。

C++解法二:

 class Solution {
public:
int uniquePaths(int m, int n) {
double num = 1, denom = 1;
int small = m > n ? n : m;
for (int i = 1; i <= small - 1; ++i) {
num *= m + n - 1 - i;
denom *= i;
}
return (int)(num / denom);
}
};

LeetCode(62):不同路径的更多相关文章

  1. Java实现 LeetCode 62 不同路径

    62. 不同路径 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为"Start" ). 机器人每次只能向下或者向右移动一步.机器人试图达到网格的右下角(在下图中 ...

  2. LeetCode.62——不同路径

    问题描述: 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为"Start" ). 机器人每次只能向下或者向右移动一步.机器人试图达到网格的右下角(在下图中标记为 ...

  3. LeetCode 62.不同路径(C++)

    一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” ). 机器人每次只能向下或者向右移动一步.机器人试图达到网格的右下角(在下图中标记为“Finish”). 问总共有多 ...

  4. LeetCode 62 不同路径

    一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” ).机器人每次只能向下或者向右移动一步.机器人试图达到网格的右下角.问总共有多少条不同的路径? 示例 1: 输入: ...

  5. [LeetCode] 62. 不同路径 ☆☆☆(动态规划)

    动态规划该如何优化 描述 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” ). 机器人每次只能向下或者向右移动一步.机器人试图达到网格的右下角(在下图中标记为“Fi ...

  6. leetcode 62. 不同路径(C++)

    一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” ). 机器人每次只能向下或者向右移动一步.机器人试图达到网格的右下角(在下图中标记为“Finish”). 问总共有多 ...

  7. Leetcode之动态规划(DP)专题-62. 不同路径(Unique Paths)

    Leetcode之动态规划(DP)专题-62. 不同路径(Unique Paths) 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” ). 机器人每次只能向下或者向 ...

  8. LeetCode 64. 最小路径和(Minimum Path Sum) 20

    64. 最小路径和 64. Minimum Path Sum 题目描述 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明: 每次只能向下或 ...

  9. LeetCode:简化路径【71】

    LeetCode:简化路径[71] 题解参考天码营:https://www.tianmaying.com/tutorial/LC71 题目描述 给定一个文档 (Unix-style) 的完全路径,请进 ...

  10. LeetCode 71.简化路径

    LeetCode 71.简化路径 题目描述: 以 Unix 风格给出一个文件的绝对路径,你需要简化它.或者换句话说,将其转换为规范路径.在 Unix 风格的文件系统中,一个点(.)表示当前目录本身:此 ...

随机推荐

  1. C++中>>,<<的重载问题

    在学习对运算符的重载的时候,重载了++,--(前缀后缀),并且都是在定义为类中的成员函数.但是当我尝试去重载>>,<<为某一个类的成员函数的时候,就会报错,无论如何改参数的属性 ...

  2. C# Winform 按回车键查找下一个可设置焦点的组件

    private void frmLogin_KeyPress(object sender, KeyPressEventArgs e) { //按回车键查找下一个可设置焦点的组件. if (e.KeyC ...

  3. web4.0基本配置

    const path = require('path');//引入路径包 const HWP = require('html-webpack-plugin');//引入自动产出html包 const ...

  4. C++ STL sort()函数用法

    C++STL提供的在里的排序函数,有以下两种形式 此外还提供有稳定排序版本stable_sort(),用法类似. 第一种形式: template <class RandomAccessItera ...

  5. HTML5的 input:file上传 以及 类型控制

    以HTML5的文件上传API 如下demo代码在.html文件打开即可: !DOCTYPE html> <html lang="zh_cn"> <head& ...

  6. kali安装以及配置

    1.https://klionsec.github.io/2017/04/29/kali-config/ 2.http://www.freebuf.com/sectool/133526.html

  7. Linux - 进程服务资源

    1.进程查看操作管理 ps -eaf # 查看所有进程 kill - PID # 强制终止某个PID进程 kill - PID # 安全退出 需程序内部处理信号 cmd & # 命令后台运行 ...

  8. 重新看halcon模板匹配

    工业中模板匹配有很多需求. 代码如下: read_image (Image, 'J:/测试图片/test1/1.bmp') get_image_size (Image, Width, Height) ...

  9. Android性能优化系列之Bitmap图片优化

    https://blog.csdn.net/u012124438/article/details/66087785 在Android开发过程中,Bitmap往往会给开发者带来一些困扰,因为对Bitma ...

  10. 【转】Python数据类型之“序列概述与基本序列类型(Basic Sequences)”

    [转]Python数据类型之“序列概述与基本序列类型(Basic Sequences)” 序列是指有序的队列,重点在"有序". 一.Python中序列的分类 Python中的序列主 ...