EM算法——Expectation-Maximization
最大似然估计
一个栗子:假如去赌场,但是不知道能不能赚钱,你就在门口堵着出来一个人就问一个赚了还是赔了,如果问了5个人都说赚了,那么你就会认为,赚钱的概率肯定是非常大的。
已知:(1)样本服从分部的模型,(2)观测到的样本
求解:模型的参数
总的来说:极大似然估计就是用来估计模型参数的统计学方法
最大似然的数学问题(100名学生的身高问题)
样本集X = {x1, x2 ,...,xN} N = 100
概率密度:p(xi|θ)抽到男生i(的身高)的概率
θ是服从分部的参数
独立同分布:同时抽到这100个男生的概率就是他们各自概率的乘积
最大似然函数:
(对数是为了乘法转加法)
什么样的参数θ能够使得出现当前这批样本的概率最大
已知某个随机样本满足某种概率分布,但是其中具体的参数不清楚,参数估计就是通过若干次试验,观察其结果,利用结果推出参数的大概值。
问题又难了一步
现在这100个人中,不光有男生,还有女生(2个类别,2种参数)
男生和女生的身高都服从高斯分布,但是参数不同(均值,方差)
用数学的语言描述:抽取得到的每个样本都不知道是从哪个分布抽取的
求解目标:男生和女生对应的身高的高斯分布的参数是多少
加入隐变量
用Z = 0或Z = 1标记样本来自哪个分部,则Z就是隐变量
最大似然函数:
求解:在给定初始值情况下进行迭代求解
EM算法
EM算法推导:
问题:样本集{x(1),...,x(m)},包含m个独立的样本。其中每个样本i对应的类别z(i)是未知的,所以很难用最大似然求解。
上式中,要考虑每个样本在各个分布中的情况。本来正常求偏导就可以了,但是现在log后面还有求和,这就难解了!
右式分子分母同时乘:
这么做就是为了凑Jensen不等式(Q(z)是Z的分布函数)
Jensen不等式
设f是定义域为实数的函数,如果对于所有的实数x。
如果对于所有的实数x,f(x)的二次导数大于等于0,那么f是凸函数。
如果f是凸函数,X是随机变量,那么:E[f(X)] > = f(E[X])
实线f是凸函数,X有0.5的概率是a,有0.5的概率是b,X的期望值就是a和b的中值了
Jensen不等式应用于凹函数时,不等号方向反向
由于:
是
的期望
假设则:
可得:
结论:
下届比较好求,所以我们要优化这个下界来使得似然函数最大
优化下届,迭代到收敛
Jensen中等式成立的条件是随机变量是常数:
Q(z)是z的分部函数:
所有的分子和等于常数C(分母相同)
Q(z)求解
由上式可得C就是p(xi,z)对z求和
Q(z)代表第i个数据是来自zi的概率
EM算法流程
初始化分布参数Θ
E-step:根据参数Θ计算每个样本属于zi的概率(也就是Q)
M-step:根据Q,求出含有Θ的似然函数的下界并最大化它,得到新的参数Θ
不断的迭代更新
GMM(高斯混合模型)
数据可以看作是从数个Gaussian Distribution中生成出来的
GMM由K个Gaussian分布组成,每个Gaussian称为一个“Component”
类似k-means方法,求解方式跟EM一样
不断的迭代更新
EM算法——Expectation-Maximization的更多相关文章
- EM算法(Expectation Maximization Algorithm)
EM算法(Expectation Maximization Algorithm) 1. 前言 这是本人写的第一篇博客(2013年4月5日发在cnblogs上,现在迁移过来),是学习李航老师的< ...
- EM算法(Expectation Maximization)
1 极大似然估计 假设有如图1的X所示的抽取的n个学生某门课程的成绩,又知学生的成绩符合高斯分布f(x|μ,σ2),求学生的成绩最符合哪种高斯分布,即μ和σ2最优值是什么? 图1 学生成绩的分 ...
- EM算法(Expectation Maximization Algorithm)初探
1. 通过一个简单的例子直观上理解EM的核心思想 0x1: 问题背景 假设现在有两枚硬币Coin_a和Coin_b,随机抛掷后正面朝上/反面朝上的概率分别是 Coin_a:P1:-P1 Coin_b: ...
- 简单理解EM算法Expectation Maximization
1.EM算法概念 EM 算法,全称 Expectation Maximization Algorithm.期望最大算法是一种迭代算法,用于含有隐变量(Hidden Variable)的概率参数模型的最 ...
- EM 算法 Expectation Maximization
- EM(Expectation Maximization)算法
EM(Expectation Maximization)算法 参考资料: [1]. 从最大似然到EM算法浅解 [2]. 简单的EM算法例子 [3]. EM算法)The EM Algorithm(详尽 ...
- 最大期望算法 Expectation Maximization概念
在统计计算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量(Lat ...
- 机器学习-EM算法
最大期望算法 EM算法的正式提出来自美国数学家Arthur Dempster.Nan Laird和Donald Rubin,其在1977年发表的研究对先前出现的作为特例的EM算法进行了总结并给出了标准 ...
- 数据挖掘十大经典算法(5) 最大期望(EM)算法
在统计计算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量(Lat ...
- EM算法及其推广
概述 EM算法是一种迭代算法,用于含有隐变量(hidden variable)的概率模型参数的极大似然估计,或极大后验概率估计. EM算法的每次迭代由两步组成:E步,求期望(expectation): ...
随机推荐
- Qt读取TXT文件时,GBK与UTF-8编码判断
读取txt文件时,很多时候无法获取文件的编码格式.如果直接进行使用,则有可能出现乱码.需要在使用前将其转为Unicode(Qt的默认编码格式). 虽然实际的编码格式种类非常多,但平常主要使用的有GBK ...
- django 集合
1,前言 socket 位于应用层和传输层之间的一个抽象层,它是一个接口. 百度的服务器(socket服务端) . 启动socket . 绑定ip和端口 . 监听 . 接收数据 . 发送数据 . 断开 ...
- 大数据学习路线之linux系统基础搭建
学习大数据是必须掌握一定Linux知识的,工欲善其事,必先利其器.在学习之前,首先需要搭建Linux系统,本节将讲解VMware Workstation的安装和CentOS 7系统的安装. 1.2.1 ...
- MySQL笔记(八)存储过程练习&补充
存储过程有什么优缺点?为什么要用存储过程?或者在什么情况下才用存储过程? 最直白的好处是存储过程比较快. 1.利用存储过程,给Employee表添加一条业务部门员工的信息. DROP PROCEDUR ...
- layui使用iconfont
layui的图标取自于阿里巴巴的矢量图标库 Iconfont,同样的,这篇教程也是基于Iconfont进行扩展. 第一步,通过浏览器打开 http://iconfont.cn/ ,访问阿里巴巴矢量图标 ...
- P2044 [NOI2012]随机数生成器
洛咕原题 正常的矩乘题. 但是,计算过程中会爆long long. 所以,我们要用快速(龟速)乘来解决. 快速乘,也就是把快速幂稍作修改.乘法被分成若干个加法,以时间为代价解决精度问题. #inclu ...
- 哪些个在 Sublime Text 下,"任性的" 好插件!
我在sublime里面安装了以下有利于项目开发高效的插件: 1:SVN 源代码版本控制 2:LiveReload 浏览器实时刷新 3:jsMinifier 压缩 j ...
- mysql 8.0 Druid连接时调用getServerCharset报空指针异常解决方法
类似错误信息如下: 16:52:01.163 [Druid-ConnectionPool-Create-1641320886] ERROR com.alibaba.druid.pool.DruidDa ...
- AnswerOpenCV(1001-1007)一周佳作欣赏
外国不过十一,所以利用十一假期,看看他们都在干什么. 一.小白问题 http://answers.opencv.org/question/199987/contour-single-blob-with ...
- MS11-050安全漏洞
IE浏览器渗透攻击--MS11050安全漏洞 实验前准备 1.两台虚拟机,其中一台为kali,一台为windows xp sp3(包含IE7). 2.设置虚拟机网络为NAT模式,保证两台虚拟机可以相互 ...