题目链接:http://poj.org/problem?id=3974

Time Limit: 15000MS Memory Limit: 65536K

Description

Andy the smart computer science student was attending an algorithms class when the professor asked the students a simple question, "Can you propose an efficient algorithm to find the length of the largest palindrome in a string?"

A string is said to be a palindrome if it reads the same both forwards and backwards, for example "madam" is a palindrome while "acm" is not.

The students recognized that this is a classical problem but couldn't come up with a solution better than iterating over all substrings and checking whether they are palindrome or not, obviously this algorithm is not efficient at all, after a while Andy raised his hand and said "Okay, I've a better algorithm" and before he starts to explain his idea he stopped for a moment and then said "Well, I've an even better algorithm!".

If you think you know Andy's final solution then prove it! Given a string of at most 1000000 characters find and print the length of the largest palindrome inside this string.

Input

Your program will be tested on at most 30 test cases, each test case is given as a string of at most 1000000 lowercase characters on a line by itself. The input is terminated by a line that starts with the string "END" (quotes for clarity). 

Output

For each test case in the input print the test case number and the length of the largest palindrome. 

Sample Input

abcbabcbabcba
abacacbaaaab
END

Sample Output

Case 1: 13
Case 2: 6

题意:

给出若干个字符串,求最长回文子串的长度。

题解:

首先预处理字符串的长度为 $i$ 的前缀子串的哈希值 $pre[i]$,

再把字符串反转,预处理新的字符串的长度为 $i$ 的前缀子串的哈希值 $suf[i]$,

这样,如果在原串中存在一个 $[l_1,r_1]$ 的回文串,那么对应到新串,这个区间就是 $[l_2,r_2] = [len - r_1 +1,len - l_1 + 1]$,这两个子串的哈希值应当是相等的,即:

$pre[r_1 ] - pre[l_1 - 1] \times P^x = suf[r_2 ] - suf[l_2 - 1] \times P^x$

其中,$x = r_1 - l_1 + 1 = r_2 - l_2 +1$。

所以,不难想到,我们如果二分回文子串的长度,就可以 $O\left( {\left| S \right|\log \left| S \right|} \right)$ 求出最长回文子串。

但是,这样做的话,在测样例时就会发现问题,奇数长度的回文子串和偶数长度的回文子串应当是分开计算的(因为回文串两侧同时各去掉一个字符,依然是回文串,且不改变奇偶性),

所以,需要两次二分,一次二分求得长度为偶数的最长回文子串(的长度),再一次二分求得长度为奇数的最长回文子串(的长度)。

最后输出两者中大的即可。

AC代码:

#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
typedef unsigned long long ull; const int P=;
const int maxn=+; int len;
char s[maxn];
int q; ull pre[maxn],suf[maxn],Ppow[maxn];
void pretreat()
{
pre[]=;
suf[]=;
Ppow[]=;
for(int i=;i<=len;i++)
{
pre[i]=pre[i-]*P+(s[i]-'a'+);
suf[i]=suf[i-]*P+(s[len-i+]-'a'+);
Ppow[i]=Ppow[i-]*P;
}
} bool found(int x)
{
for(int l1=;l1+x-<=len;l1++)
{
int r1=l1+x-;
int r2=len-l1+,l2=r2-x+;
ull A=pre[r1]-pre[l1-]*(Ppow[x]);
ull B=suf[r2]-suf[l2-]*(Ppow[x]);
if(A==B) return ;
}
return ;
} int main()
{
int kase=;
while(scanf("%s",s+) && s[]!='E')
{
len=strlen(s+);
pretreat(); int l=,r=len/,mid;
while(l<r)
{
mid=(l+r)/+;
if(found(*mid)) l=mid;
else r=mid-;
}
int ans1=l*; l=,r=(len-)/;
while(l<r)
{
mid=(l+r)/+;
if(found(*mid+)) l=mid;
else r=mid-;
}
int ans2=l*+; printf("Case %d: %d\n",++kase,max(ans1,ans2));
}
}

POJ 3974 - Palindrome - [字符串hash+二分]的更多相关文章

  1. Palindrome POJ - 3974 (字符串hash+二分)

    Andy the smart computer science student was attending an algorithms class when the professor asked t ...

  2. POJ 3974 Palindrome 字符串 Manacher算法

    http://poj.org/problem?id=3974 模板题,Manacher算法主要利用了已匹配回文串的对称性,对前面已匹配的回文串进行利用,使时间复杂度从O(n^2)变为O(n). htt ...

  3. POJ 1159 Palindrome(字符串变回文:LCS)

    POJ 1159 Palindrome(字符串变回文:LCS) id=1159">http://poj.org/problem? id=1159 题意: 给你一个字符串, 问你做少须要 ...

  4. 字符串hash + 二分答案 - 求最长公共子串 --- poj 2774

    Long Long Message Problem's Link:http://poj.org/problem?id=2774 Mean: 求两个字符串的最长公共子串的长度. analyse: 前面在 ...

  5. POJ 1743 Musical Theme (字符串HASH+二分)

    Musical Theme Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 15900   Accepted: 5494 De ...

  6. POJ 3974 Palindrome

    D - Palindrome Time Limit:15000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Sub ...

  7. POJ 3865 - Database 字符串hash

    [题意] 给一个字符串组成的矩阵,规模为n*m(n<=10000,m<=10),如果某两列中存在两行完全相同,则输出NO和两行行号和两列列号,否则输出YES [题解] 因为m很小,所以对每 ...

  8. POJ 3974 Palindrome (算竞进阶习题)

    hash + 二分答案 数据范围肯定不能暴力,所以考虑哈希. 把前缀和后缀都哈希过之后,扫描一边字符串,对每个字符串二分枚举回文串长度,注意要分奇数和偶数 #include <iostream& ...

  9. POJ 3974 Palindrome(最长回文子串)

    题目链接:http://poj.org/problem?id=3974 题意:求一给定字符串最长回文子串的长度 思路:直接套模板manacher算法 code: #include <cstdio ...

随机推荐

  1. .NET 同步与异步之锁(ReaderWriterLockSlim)(八)

    本随笔续接:.NET 同步与异步之锁(Lock.Monitor)(七) 由于锁 ( lock 和 Monitor ) 是线程独占式访问的,所以其对性能的影响还是蛮大的,那有没有一种方式可是实现:允许多 ...

  2. iOS 测试版系统安装说明(粗略翻译)

    我们常常看到在https://developer.apple.com/download/这里会有beta版本的ios系统 或者开发软件 关于beta版本的应用,其实有很大用处,好多人会在正式版没有发布 ...

  3. 物联网架构成长之路(16)-SpringCloud从入门到吹水

    1.前言 Spring Cloud 现在比较流行,版本更新也是蛮快的,网上资料也是很多.很多参考网上资料就可以学到了.这里给个 http://blog.csdn.net/forezp/article/ ...

  4. 菜鸟教程之工具使用(八)——EGit禁止自动转换回车换行符

    众所周知,Windows和Linux系统的回车换行是不一样的.想要进一步了解它们的可以阅读下面的介绍,不感兴趣的可以直接跳过. 产生背景 关于“回车”(carriage return)和“换行”(li ...

  5. 【Spark 深入学习 07】RDD编程之旅基础篇03-键值对RDD

    --------------------- 本节内容: · 键值对RDD出现背景 · 键值对RDD转化操作实例 · 键值对RDD行动操作实例 · 键值对RDD数据分区 · 参考资料 --------- ...

  6. default listener is not configured in grid infrastructure home

    Oracle Restart enable database creation requries Default listener configured and running in Grid Inf ...

  7. 3D 特征点概述(2)

    还是紧接着上一文章的思路继续介绍3D特征点的基本概念问题,还是这个表格: Feature Name Supports Texture / Color Local / Global / Regional ...

  8. 理解Java枚举类型

    (参考资料:深入理解java enum) 1.原理:对编译后的class文件javap反编译可以看出,定义的枚举类继承自java.lang.Enum抽象类且通过public static final定 ...

  9. jexl2 执行字符串Java代码

    一,引入jar包, <!-- https://mvnrepository.com/artifact/org.apache.commons/commons-jexl --><depen ...

  10. iOS开发之--cocopods相关问题及解决方法

    Note: as of CocoaPods 1.0, `pod repo update` does not happen on `pod install` by default 解决办法:删除工程中的 ...