metrcis输出

collector.go

package main

import (
"github.com/prometheus/client_golang/prometheus"
) //Define a struct for you collector that contains pointers
//to prometheus descriptors for each metric you wish to expose.
//Note you can also include fields of other types if they provide utility
//but we just won't be exposing them as metrics.
type fooCollector struct {
fooMetric *prometheus.Desc
barMetric *prometheus.Desc
} //You must create a constructor for you collector that
//initializes every descriptor and returns a pointer to the collector
func newFooCollector() *fooCollector {
return &fooCollector{
fooMetric: prometheus.NewDesc("foo_metric",
"Shows whether a foo has occurred in our cluster",
nil, nil,
),
barMetric: prometheus.NewDesc("bar_metric",
"Shows whether a bar has occurred in our cluster",
nil, nil,
),
}
} //Each and every collector must implement the Describe function.
//It essentially writes all descriptors to the prometheus desc channel.
func (collector *fooCollector) Describe(ch chan<- *prometheus.Desc) { //Update this section with the each metric you create for a given collector
ch <- collector.fooMetric
ch <- collector.barMetric
} //Collect implements required collect function for all promehteus collectors
func (collector *fooCollector) Collect(ch chan<- prometheus.Metric) { //Implement logic here to determine proper metric value to return to prometheus
//for each descriptor or call other functions that do so.
var metricValue float64
if 1 == 1 {
metricValue = 1
} //Write latest value for each metric in the prometheus metric channel.
//Note that you can pass CounterValue, GaugeValue, or UntypedValue types here.
ch <- prometheus.MustNewConstMetric(collector.fooMetric, prometheus.CounterValue, metricValue)
ch <- prometheus.MustNewConstMetric(collector.barMetric, prometheus.CounterValue, metricValue) }

http输出

main.go

package main

import (
"net/http" log "github.com/Sirupsen/logrus"
"github.com/prometheus/client_golang/prometheus"
"github.com/prometheus/client_golang/prometheus/promhttp"
) func main() { //Create a new instance of the foocollector and
//register it with the prometheus client.
foo := newFooCollector()
prometheus.MustRegister(foo) //This section will start the HTTP server and expose
//any metrics on the /metrics endpoint.
http.Handle("/metrics", promhttp.Handler())
log.Info("Beginning to serve on port :8080")
log.Fatal(http.ListenAndServe(":8080", nil))
}

单文件

package main

import (
log "github.com/Sirupsen/logrus"
"github.com/prometheus/client_golang/prometheus"
"github.com/prometheus/client_golang/prometheus/promhttp"
"net/http"
) //Define a struct for you collector that contains pointers
//to prometheus descriptors for each metric you wish to expose.
//Note you can also include fields of other types if they provide utility
//but we just won't be exposing them as metrics.
type fooCollector struct {
fooMetric *prometheus.Desc
barMetric *prometheus.Desc
} //You must create a constructor for you collector that
//initializes every descriptor and returns a pointer to the collector
func newFooCollector() *fooCollector {
return &fooCollector{
fooMetric: prometheus.NewDesc("fff_metric",
"Shows whether a foo has occurred in our cluster",
nil, nil,
),
barMetric: prometheus.NewDesc("bbb_metric",
"Shows whether a bar has occurred in our cluster",
nil, nil,
),
}
} //Each and every collector must implement the Describe function.
//It essentially writes all descriptors to the prometheus desc channel.
func (collector *fooCollector) Describe(ch chan<- *prometheus.Desc) { //Update this section with the each metric you create for a given collector
ch <- collector.fooMetric
ch <- collector.barMetric
} //Collect implements required collect function for all promehteus collectors
func (collector *fooCollector) Collect(ch chan<- prometheus.Metric) { //Implement logic here to determine proper metric value to return to prometheus
//for each descriptor or call other functions that do so.
var metricValue float64
if 1 == 1 {
metricValue = 1
} //Write latest value for each metric in the prometheus metric channel.
//Note that you can pass CounterValue, GaugeValue, or UntypedValue types here.
ch <- prometheus.MustNewConstMetric(collector.fooMetric, prometheus.CounterValue, metricValue)
ch <- prometheus.MustNewConstMetric(collector.barMetric, prometheus.CounterValue, metricValue) } func main() { //Create a new instance of the foocollector and
//register it with the prometheus client.
foo := newFooCollector()
prometheus.MustRegister(foo) //This section will start the HTTP server and expose
//any metrics on the /metrics endpoint.
http.Handle("/metrics", promhttp.Handler())
log.Info("Beginning to serve on port :8080")
log.Fatal(http.ListenAndServe(":8080", nil))
}

使用golang编写prometheus metrics exporter的更多相关文章

  1. Golang 基于Prometheus Node_Exporter 开发自定义脚本监控

    Golang 基于Prometheus Node_Exporter 开发自定义脚本监控 公司是今年决定将一些传统应用从虚拟机上迁移到Kubernetes上的,项目多而乱,所以迁移工作进展缓慢,为了建立 ...

  2. Prometheus Metrics 设计的最佳实践和应用实例,看这篇够了!

    Prometheus 是一个开源的监控解决方案,部署简单易使用,难点在于如何设计符合特定需求的 Metrics 去全面高效地反映系统实时状态,以助力故障问题的发现与定位.本文即基于最佳实践的 Metr ...

  3. goaccess 通过jsonpath 转换为prometheus metrics

    goaccess 是一个不错的日志分析工具,包含了json 数据同时支持基于websocket 的实时数据处理,当然我们可以通过jsonpath 的exporter 转换为支持promethues 的 ...

  4. 使用haproxy 2.0 prometheus metrics 监控系统状态

    haproxy 2.0 已经发布一段时间了,提供内部直接暴露的prometheus metrics 很方便 ,可以快速的监控系统的状态 以下是一个简单的demo 环境准备 docker-compose ...

  5. [转帖]prometheus数据采集exporter全家桶

    prometheus数据采集exporter全家桶 Rainbowhhy1人评论2731人阅读2019-04-06 15:38:32 https://blog.51cto.com/13053917/2 ...

  6. Prometheus之Exporter开发

    Prometheus开发Exporter简介 Exporter 本身是一个http 服务,其指标结果只要符合 Prometheus 规范就可以被 Prometheus 使用. Prometheus中m ...

  7. Golang编写动态库实现回调函数

    Golang编写动态库实现回调函数 我们现在要做一个动态库,但是C++实在是比较难,于是就想能不能用更简单的golang来实现,golang也就是最近的版本才支持编译成动态库,在网上也没找到可用的案例 ...

  8. 【开源监控】Prometheus+Node Exporter+Grafana监控linux服务器

    Prometheus Prometheus介绍 Prometheus新一代开源监控解决方案.github地址 Prometheus主要功能 多维 数据模型(时序由 metric 名字和 k/v 的 l ...

  9. Prometheus + Node Exporter + Grafana 监控主机运行信息

      上一篇文章中讲了如何利用Prometheus和Grafana监控SpringBoot应用的JVM信息,这次就来看看如何监控 服务器运行状态,先列出用到的工具: Prometheus node_ex ...

随机推荐

  1. 【PowerDesigner】【2】将工具栏显示出来

    问题:我的软件一打开,没有工具栏 解决方案:Tools→Customize Menus and Tools→Palette→Close 参考文档: PowerDesigner如何将消失的工具栏显示出来 ...

  2. linux上安装vmtools

    在虚拟机和宿主机之间来说操作得一直按ctrl+alt,显得比较麻烦. 那么就只要安装一个工具就可以让我们的操作更加的简易,我对vmtools安装步骤做了以下图解. 在导航栏找到这个标签,选择安装vmt ...

  3. Python---字典常用方法总结

    字典是一种key-value的数据类型,字典里必须写Key和value,字典的优点是取数方便和速度快.字典的特性: 1.字典是无序的,因为它没有下标,用key来当索引,所以是无序的 2.字典的key必 ...

  4. linux LVM详解

    1.创建及删除步骤1)创建:linux partition-->pv-->vg-->lv-->fs-->mount2)删除:umount-->lv-->vg- ...

  5. PowerShell使用教程

    一.说明 1.1 背景说明 个人对PowerShell也不是很熟悉,开始的时候就突然看到开始菜单中多了个叫PowerShell的文件夹,后来一点就看到某个教程视频说PowerShell很厉害但也没怎么 ...

  6. Python自然语言处理---信息提取

    1.数据 目前的数据总体上分为结构化和非结构化的数据.结构化的数据是指实体和关系的规范和可预测的组织.大部分的需要处理的数据都属于非结构化的数据. 2.信息提取 简言之就是从文本中获取信息意义的方法. ...

  7. Win10系列:JavaScript 动画1

    在应用程序中使用动画会使应用显得更加生动,进而给用户带来良好的视觉效果.例如,当用户将某个项添加到列表时,新项不会立即出现在列表中,而是采用动画形式到达相应位置,并且列表中的其他项也采用动画形式移动到 ...

  8. 尚学堂java答案解析 第三章

    本答案为本人个人编辑,仅供参考,如果读者发现,请私信本人或在下方评论,提醒本人修改 一.选择题 1.A 2.BD 解析:switch的的判断表达式的数据类型:byte  short   int  ch ...

  9. 如何快速成为一名Linux运维工程师

    如今的互联网,绝大多数的网站.服务.游戏均是跑在Linux上面的,虽说Linux发行版众多,只要玩熟了一种发行版,了解了Linux精髓.基本架构.设计原理,其他都是触类旁通的,千万不要在选择哪一发行版 ...

  10. Pamulinawen--IPA--菲律宾伊洛卡诺语

    这是一首菲律宾的民谣(不是他加禄语/Tagalog, 而是伊洛卡诺语/Ilokano), 我们国家的著名歌手朱明瑛也翻唱过, 歌曲中文名为<<田野之歌>>.