2017ICPC南宁赛区网络赛 Overlapping Rectangles(重叠矩阵面积和=离散化模板)
There are nnn rectangles on the plane. The problem is to find the area of the union of these rectangles. Note that these rectangles might overlap with each other, and the overlapped areas of these rectangles shall not be counted more than once. For example, given a rectangle AAA with the bottom left corner located at (0,0)(0, 0)(0,0) and the top right corner at (2,2)(2, 2)(2,2), and the other rectangle BBB with the bottom left corner located at (1,1)(1,1)(1,1) and the top right corner at (3,3)(3,3)(3,3), it follows that the area of the union of AAA and BBB should be 777, instead of 888.
Although the problem looks simple at the first glance, it might take a while to figure out how to do it correctly. Note that the shape of the union can be very complicated, and the intersected areas can be overlapped by more than two rectangles.
Note:
(1) The coordinates of these rectangles are given in integers. So you do not have to worry about the floating point round-off errors. However, these integers can be as large as 1,000,0001,000,0001,000,000.
(2) To make the problem easier, you do not have to worry about the sum of the areas exceeding the long integer precision. That is, you can assume that the total area does not result in integer overflow.
Input Format
Several sets of rectangles configurations. The inputs are a list of integers. Within each set, the first integer (in a single line) represents the number of rectangles, n, which can be as large as 100010001000. After n, there will be n lines representing the n rectangles; each line contains four integers <a,b,c,d><a, b, c, d><a,b,c,d> , which means that the bottom left corner of the rectangle is located at (a,b)(a, b)(a,b), and the top right corner of the rectangle is located at (c,d)(c, d)(c,d). Note that integers aaa, bbb, ccc, ddd can be as large as 1,000,0001,000,0001,000,000.
These configurations of rectangles occur repetitively in the input as the pattern described above. An integer n=0n = 0n=0 (zero) signifies the end of input.
Output Format
For each set of the rectangles configurations appeared in the input, calculate the total area of the union of the rectangles. Again, these rectangles might overlap each other, and the intersecting areas of these rectangles can only be counted once. Output a single star '*' to signify the end of outputs.
样例输入
2
0 0 2 2
1 1 3 3
3
0 0 1 1
2 2 3 3
4 4 5 5
0
样例输出
7
3
* 直接套模板
参考博客:POJ 1151 Atlantis(重叠矩阵面积和=离散化)
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn=;
struct Node//矩形
{
double x1,y1,x2,y2;
}nodes[maxn];
double x[maxn],y[maxn];
bool mp[maxn][maxn]; int find(double *x,double val,int n)//在数组x中找到val值的位置
{
int L=,R=n-;
while(R>=L)
{
int mid=L+(R-L)/;
if(x[mid]==val) return mid;
else if(x[mid]>val) R=mid-;
else L=mid+;
}
return -;
} int main()
{
int n,num1,num2;
while(~scanf("%d",&n))
{
if(n==){printf("*\n");break;}
num1=num2=;//num1记录有多少个不同x值,num2记录y的
memset(mp,,sizeof(mp));
for(int i=;i<n;++i)
{
scanf("%lf%lf%lf%lf",&nodes[i].x1,&nodes[i].y1,&nodes[i].x2,&nodes[i].y2);
x[num1++]=nodes[i].x1;
x[num1++]=nodes[i].x2;
y[num2++]=nodes[i].y1;
y[num2++]=nodes[i].y2;
}
sort(x,x+num1);
sort(y,y+num2);
num1=unique(x,x+num1)-x;//去重
num2=unique(y,y+num2)-y;//去重 for(int i=;i<n;++i)
{
//找出第i个原始大矩形覆盖的小矩形范围
int L_x=find(x,nodes[i].x1,num1);
int R_x=find(x,nodes[i].x2,num1);
int L_y=find(y,nodes[i].y1,num2);
int R_y=find(y,nodes[i].y2,num2); for(int j=L_x;j<R_x;++j)
for(int k=L_y;k<R_y;++k)
mp[j][k]=true;
}
long long int ans=;
for(int i=;i<num1;++i)
for(int j=;j<num2;++j)if(mp[i][j])
ans += (x[i+]-x[i])*(y[j+]-y[j]);
printf("%lld\n",ans);
}
return ;
}
2017ICPC南宁赛区网络赛 Overlapping Rectangles(重叠矩阵面积和=离散化模板)的更多相关文章
- 2017 ACM/ICPC 南宁区 网络赛 Overlapping Rectangles
2017-09-24 20:11:21 writer:pprp 找到的大神的代码,直接过了 采用了扫描线+线段树的算法,先码了,作为模板也不错啊 题目链接:https://nanti.jisuanke ...
- 2017ICPC南宁赛区网络赛 Minimum Distance in a Star Graph (bfs)
In this problem, we will define a graph called star graph, and the question is to find the minimum d ...
- 2017ICPC南宁赛区网络赛 The Heaviest Non-decreasing Subsequence Problem (最长不下降子序列)
Let SSS be a sequence of integers s1s_{1}s1, s2s_{2}s2, ........., sns_{n}sn Each integer i ...
- 2017ICPC南宁赛区网络赛 Train Seats Reservation (简单思维)
You are given a list of train stations, say from the station 111 to the station 100100100. The passe ...
- 2017 ACM-ICPC 亚洲区(南宁赛区)网络赛 M. Frequent Subsets Problem【状态压缩】
2017 ACM-ICPC 亚洲区(南宁赛区)网络赛 M. Frequent Subsets Problem 题意:给定N和α还有M个U={1,2,3,...N}的子集,求子集X个数,X满足:X是U ...
- 2017 ACM-ICPC 亚洲区(南宁赛区)网络赛 Overlapping Rectangles
There are nn rectangles on the plane. The problem is to find the area of the union of these rectangl ...
- 2017ICPC北京赛区网络赛 Minimum(数学+线段树)
描述 You are given a list of integers a0, a1, …, a2^k-1. You need to support two types of queries: 1. ...
- 2017ICPC北京赛区网络赛 Visiting Peking University(简单思维)
描述 Ming is going to travel for n days and the date of these days can be represented by n integers: 0 ...
- HDU 4041 Eliminate Witches! (模拟题 ACM ICPC 2011亚洲北京赛区网络赛)
HDU 4041 Eliminate Witches! (模拟题 ACM ICPC 2011 亚洲北京赛区网络赛题目) Eliminate Witches! Time Limit: 2000/1000 ...
随机推荐
- 【Java】【7】枚举类
用处:规范了参数的形式,更简洁易懂 实例: //消息类型 public enum MessageTypeEnum { AdminReward(1, "官方消息"), StoreRe ...
- react-native run-ios时报错xcrun: error: unable to find utility "instruments", not a developer tool or in PATH
命令行运行react-native 项目时,报错:xcrun: error: unable to find utility "instruments", not a develop ...
- 14. Longest Common Prefix C++
采用纵向遍历,即对第一个字符串,取出第一个字符,检查是否出现在随后每一个字符串中,以此类推.当遍历完成或有一个字符串不符合要求,直接return. class Solution { public: s ...
- Nginx配置——区分PC或手机访问不同域名
新官网上线,但在手机上访问新官网的体验很差,要求在手机上访问新官网时访问旧官网,可以通过修改Nginx配置来实现自动跳转.首先是新官网的Nginx配置文件加个跳转判断,通过user-agent判断来源 ...
- git设置远程同步分支
git push --set-upstream origin yourBranchName
- Lunx下 怎样启动和关闭oracle数据库
1.因为oracle运行在Linux系统下,首先,要连接Linux系统 2.切换到oracle安装用户下. 我的是 ora12. 3.运行oracle的环境变量, 以便输入相关命令. 4.进入orac ...
- Django之WSGI 和MVC/MTV
一.什么是WSGI? WEB框架的本质是一个socket服务端接收用户请求,加工数据返回给客户端(Django),但是Django没有自带socket需要使用 别人的 socket配合Django才能 ...
- Java Web(十) 分页功能
分页 分页的使用非常普遍,现在一步步的把分页功能实现出来,先看看已经写好的效果: 该页面的所有数据都存放在一个javaBean对象(PageBean)里,每次访问该页面时,Serlvet就会把page ...
- Win10系列:UWP界面布局进阶1
全新的Windows 10 操作系统支持多种视图模式,用户可以根据需要选择不同的视图模式显示应用.当用户同时浏览或操作多个应用程序时,可以将应用视图调整为辅屏视图或填充视图,这样在一个屏幕中可以同时对 ...
- 尚学堂java 答案解析 第五章
本答案为本人个人编辑,仅供参考,如果读者发现,请私信本人或在下方评论,提醒本人修改 一.选择题 1.AB 解析:A可以被所有类访问,B可以被当前包的所有类访问,也可以被所有子类访问 2.A 解析:所有 ...