[Algorithm] Asymptotic Growth Rate
f(n) 的形式 vs 判定形势
但,此题型过于简单,一般不出现在考题中。
Extended:


Let's set n = 2^m, so m = log(n)
T(n) = 2*T(n^(1/2)) + 1 =>
T(2^m) = 2*T(2^(m/2)) + 1 =>
S(M) = 2*S(M/2)) + 1
通过变量替换,变为了熟悉的、主定理能解决的 形式 => S(m) ~ O(m)
故,S(m) = T(log(n)) ~ O(log(n))
关键点:match 主定理(3)的条件。
a*f(n/b) <= c*f(n) ->
3*f(n/4) <= c*f(n) ->
3*(n/4)*log(n/4) <= c*n*log(n) ->
3/4 * n*log(n/4) <= c*n*log(n)
可见,有c<1时,是满足的。
答案就是O(nlogn)
When f(x) = x*sqrt(x+1)
这里的常数1是个tricky.
去掉它,x^(3/2)
变为x,sqrt(2)*[x^(3/2)]
可见,f(x)~Θ(x^(3/2))
T(n)=T(⌊n/2⌋)+T(⌊n/4⌋)+T(⌊n/8⌋)+n.

n+(7/8)*n+(7/8)^2 *n+(7/8)^3 *n+⋯ 等比数列!
so we have a geometric series and thus,

for our upper bound.
In a similar way, we could count just the contribution of the leftmost branches and conclude that T(n)≥2n.
Putting these together gives us the desired bound, T(n)=Θ(n)
Extended:
Recurrence Relation T(n)=T(n/8)+T(n/4)+lg(n)
太难:Solution.
(a) T(n) = T(n-1) + cn link
(b) T(n) = T(n-1) + log(n) link
(c) T(n) = T(n-1) + n^2 link
(d) T(n) = T(n-1) + 1/n link
(a) 递归展开,探寻规律:
T(n)=T(n−3)+(n−2)c+(n−1)c+nc
At the end we use T(2)=T(1)+2c=1+2cT(2)=T(1)+2c=1+2c. We conclude that
T(n)=1+(2+3+⋯+n)c.

可见是O(n^2)
(b) 递归展开,探寻规律:
T(n) = T(n - 1) + log n
= T(n - 2) + log (n - 1) + log n
= T(n - 3) + log (n - 2) + log (n - 1) + log n
= ...
= T(0) + log 1 + log 2 + ... + log (n - 1) + log n
= T(0) + log n!
According to Stirling's formula, 可见是O(n*log(n))
(c) 递归展开,探寻规律:
T(n)=T(0)+1^2+2^2+3^2+⋯+n^2

Or simply,

O(n^3)
(d) 这里是个调和级数
This is the nth harmonic number, Hn = 1 + 1/2 + 1/3 + ... + 1/n.
"所有调和级数都是发散于无穷的。但是其拉马努金和存在,且为欧拉常数。"
In fact, Hn = ln(n) + γ + O(1/n)
Hint:比较难,需换两次元。

[Algorithm] Asymptotic Growth Rate的更多相关文章
- 本人AI知识体系导航 - AI menu
Relevant Readable Links Name Interesting topic Comment Edwin Chen 非参贝叶斯 徐亦达老板 Dirichlet Process 学习 ...
- The Go Programming Language. Notes.
Contents Tutorial Hello, World Command-Line Arguments Finding Duplicate Lines A Web Server Loose End ...
- Exercises for IN1900
Exercises for IN1900October 14, 2019PrefaceThis document contains a number of programming exercises ...
- Caching Best Practices--reference
reference:http://java.dzone.com/articles/caching-best-practices There is an irresistible attraction ...
- WPF依赖对象(DependencyObject) 实现源码,理解WPF原理必读
/// DependencyObject encompasses all property engine services. It's primary function /// is providin ...
- Background removal with deep learning
[原文链接] Background removal with deep learning This post describes our work and research on the gree ...
- (转)Awesome PyTorch List
Awesome-Pytorch-list 2018-08-10 09:25:16 This blog is copied from: https://github.com/Epsilon-Lee/Aw ...
- Ethereum White Paper
https://github.com/ethereum/wiki/wiki/White-Paper White Paper EditNew Page James Ray edited this pag ...
- CSUOJ 2031 Barareh on Fire
Description The Barareh village is on fire due to the attack of the virtual enemy. Several places ar ...
随机推荐
- java计算今天是今年的第几天
Calendar.getInstance().get(Calendar.DAY_OF_YEAR)
- DirectUI消息循环的简单封装
一.真窗体和假窗体 首先在DirectWindow内部创建一个真窗体(基于WTL),可以接收消息 class CMessageWindow : public CWindowImpl< CMe ...
- perl debug
1. 进入debug模式 # perl -d ./perl_debugger.pl it prompts, DB<1> 2. 查看从第10行开始的代码. 查看函数get_pattern ...
- mysql5.7报err 1055错误 sql_mode=only_full_group_by
vim /etc/my.cnf 末尾增加 sql_mode='STRICT_TRANS_TABLES,NO_ZERO_IN_DATE,NO_ZERO_DATE,ERROR_FOR_DIVISION_B ...
- Android关于log日志,华为不输出log.v,log.d(zz)
[java] view plain copy 我用的是mate8,本来虚拟机测试一点日志一点问题没有 [java] view plain copy 但是真机测试发现log.d一直不输出,正好又试了lo ...
- 深入理解JVM(一)——JVM内存模型
JVM内存模型 Java虚拟机(Java Virtual Machine=JVM)的内存空间分为五个部分,分别是: 1. 程序计数器 2. Java虚拟机栈 3. 本地方法栈 4. 堆 5. 方法区. ...
- 疯狂Java学习笔记(75)-----------NIO.2第一篇
Java 7引入了NIO.2.NIO.2是继承自NIO框架,并添加了新的功能(比如:处理软链接和硬链接的功能).这篇帖子包含三个部分,我将使用NIO.2的一些演示样例.由此向大家演示NIO.2的基本用 ...
- 解决nginx access日志中400 bad request 错误(转)
在access.log中有大量400错误,并以每天几百M的速度增加,占用大量空间.tail -f /opt/nginx/logs/access.log 116.236.228.180 - - [15/ ...
- 部分Linux时区改为东八区的方法
直接上命令 CentOS: timedatectl set-timezone Asia/Shanghai timedatectl status date Alphine: apk add tzdata ...
- 基于Centos搭建Laravel 环境搭建
系统要求:CentOS 7.2 64 位操作系统 安装 Laravel Laravel 简介 Laravel 是一套简洁.优雅的 PHP Web 开发框架.它可以让你从面条一样杂乱的代码中解脱出来:它 ...



