https://www.mathworks.com/help/matlab/ref/conv.html?s_tid=gn_loc_drop

conv

Convolution and polynomial multiplication

Syntax

Description

example

w = conv(u,v) returns the convolution of vectors u and v. If u and v are vectors of polynomial coefficients, convolving them is equivalent to multiplying the two polynomials.

example

w = conv(u,v,shape) returns a subsection of the convolution, as specified by shape. For example, conv(u,v,'same') returns only the central part of the convolution, the same size as u, and conv(u,v,'valid') returns only the part of the convolution computed without the zero-padded edges.

 

Examples

collapse all

Polynomial Multiplication via Convolution

Create vectors u and v containing the coefficients of the polynomials and .

u = [1 0 1];
v = [2 7];

Use convolution to multiply the polynomials.

w = conv(u,v)
w =

     2     7     2     7

w contains the polynomial coefficients for .

Vector Convolution

Create two vectors and convolve them.

u = [1 1 1];
v = [1 1 0 0 0 1 1];
w = conv(u,v)
w =

     1     2     2     1     0     1     2     2     1

The length of w is length(u)+length(v)-1, which in this example is 9.

 

Central Part of Convolution

Create two vectors. Find the central part of the convolution of u and v that is the same size as u.

u = [-1 2 3 -2 0 1 2];
v = [2 4 -1 1];
w = conv(u,v,'same')
w =

    15     5    -9     7     6     7    -1

w has a length of 7. The full convolution would be of length length(u)+length(v)-1, which in this example would be 10.

 

Input Arguments

u,v — Input vectors
vectors

Input vectors, specified as either row or column vectors. The
output vector is the same orientation as the first input argument, u.
The vectors u and v can be different
lengths or data types.

Data Types: double | single
Complex Number Support: Yes

shape — Subsection of convolution
'full' (default) | 'same' | 'valid'

Subsection of the convolution, specified as 'full', 'same',
or 'valid'.

'full'

Full convolution (default).

'same'

Central part of the convolution of the same size as u.

'valid'

Only those parts of the convolution that are computed
without the zero-padded edges. Using this option, length(w) is max(length(u)-length(v)+1,0),
except when length(v) is zero. If length(v)
= 0
, then length(w) = length(u).

Convolution

@向量的卷积 重叠面积

The convolution of two vectors, u and v, represents the area of overlap under the points as v slides across u. Algebraically, convolution is the same operation as multiplying polynomials whose coefficients are the elements of u and v.

Let m = length(u) and n = length(v) . Then w is the vector of length m+n-1 whose kth element is

The sum is over all the values of j that lead to legal subscripts for u(j) and v(k-j+1), specifically j = max(1,k+1-n):1:min(k,m). When m = n, this gives

w(1) = u(1)*v(1)
w(2) = u(1)*v(2)+u(2)*v(1)
w(3) = u(1)*v(3)+u(2)*v(2)+u(3)*v(1)
...
w(n) = u(1)*v(n)+u(2)*v(n-1)+ ... +u(n)*v(1)
...
w(2*n-1) = u(n)*v(n)

https://www.zhihu.com/question/22298352?rf=21686447


卷积就是带权的积分

从概率论的角度来理解吧,举例为X Y 两组连续型随机变量,那么令Z=X+Y ,当X Y两组变量独立时,就能推导出卷积公式了,fz=fx*fy的意义就是在于两组变量叠加出来的概率密度,也就是算两信号X Y混叠起来的时候的响应
:
他的女儿是做环保的,有一次她接到一个项目,评估一个地区工厂化学药剂的污染(工厂会排放化学物质,化学物质又会挥发散去),然后建模狮告诉她药剂的残余量是个卷积。她不懂就去问她爸爸,prof就给她解释了。假设t时刻工厂化学药剂的排放量是f(t) mg,被排放的药物在排放后Δt时刻的残留比率是g(Δt) mg/mg;那么在u时刻,对于t时刻排放出来的药物,它们对应的Δt=u-t,于是u时刻化学药剂的总残余量就是∫f(t)g(u-t)dt,这就是卷积了。

Convolution and polynomial multiplication的更多相关文章

  1. Algorithm: 多项式乘法 Polynomial Multiplication: 快速傅里叶变换 FFT / 快速数论变换 NTT

    Intro: 本篇博客将会从朴素乘法讲起,经过分治乘法,到达FFT和NTT 旨在能够让读者(也让自己)充分理解其思想 模板题入口:洛谷 P3803 [模板]多项式乘法(FFT) 朴素乘法 约定:两个多 ...

  2. matlab中卷积convolution与filter用法

    转自:https://blog.csdn.net/dkcgx/article/details/46652021 转自:https://blog.csdn.net/Reborn_Lee/article/ ...

  3. 图像处理之基础---卷积及其快速算法的C++实现

    头文件: /* * Copyright (c) 2008-2011 Zhang Ming (M. Zhang), zmjerry@163.com * * This program is free so ...

  4. 二维码详解(QR Code)

    作者:王子旭链接:https://zhuanlan.zhihu.com/p/21463650来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 2016.7.5 更新:长文 ...

  5. CKKS Part3: CKKS的加密和解密

    本篇文章翻译于CKKS EXPLAINED, PART 3: ENCRYPTION AND DECRYPTION,主要介绍CKKS方案的加密和解密. 介绍 在上一篇 CKKS Part2: CKKS的 ...

  6. FZU 2215 Simple Polynomial Problem(简单多项式问题)

    Description 题目描述 You are given an polynomial of x consisting of only addition marks, multiplication ...

  7. Understanding Convolution in Deep Learning

    Understanding Convolution in Deep Learning Convolution is probably the most important concept in dee ...

  8. polynomial time

    https://en.wikipedia.org/wiki/Time_complexity#Polynomial_time An algorithm is said to be of polynomi ...

  9. POJ1060 Modular multiplication of polynomials解题报告 (2011-12-09 20:27:53)

    Modular multiplication of polynomials Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 3 ...

随机推荐

  1. OpenCV_基于局部自适应阈值的图像二值化

    在图像处理应用中二值化操作是一个很常用的处理方式,例如零器件图片的处理.文本图片和验证码图片中字符的提取.车牌识别中的字符分割,以及视频图像中的运动目标检测中的前景分割,等等. 较为常用的图像二值化方 ...

  2. (转)从海康7816的ps流里获取数据h264数据

    海康7816使用ps流来封装h.264数据,这里使用的解码器无法识别ps流,因此需要将h264数据从ps流里提取出来 对于ps流的规定可以参考13818-1文档 这里从7816里获取到一些数据取样 0 ...

  3. Oracle 12c安装详细步骤,带截图

    1,在官网上下载oracle的压缩文件,两个都要下载. 并两个同时选中解压在一个文件夹里面. 2,解压之后,如下图,点击setup.exe稍等一会儿 ,3,开始安装: 不选点击下一步,或者直接点击下一 ...

  4. 【Java 线程的深入研究4】ThreadPoolExecutor运转机制详解

    hreadPoolExecutor机制 一.概述 1.ThreadPoolExecutor作为java.util.concurrent包对外提供基础实现,以内部线程池的形式对外提供管理任务执行,线程调 ...

  5. this总结

    this总结,mark一下: Object中的this: Object方法中的this,指向的就是该对象,即谁调用this就指向谁,与C#等服务器语言的思想比较一致. let demo = { nam ...

  6. 讨论CSS中的各类居中方式

    今天主要谈一谈CSS中的各种居中的办法. 首先是水平居中,最简单的办法当然就是 margin:0 auto; 也就是将margin-left和margin-right属性设置为auto,从而达到水平居 ...

  7. python 包管理和virturlenv

    python 包管理工具 Python当前的包管理工具链是 easy_install/pip + distribute/setuptools + distutils,显得较为混乱. 而将来的工具链组合 ...

  8. Java集合----List集合

    List List 代表一个元素有序.且可重复的集合,集合中的每个元素都有其对应的顺序索引List 允许使用重复元素,可以通过索引来访问指定位置的集合元素.List 默认按元素的添加顺序设置元素的索引 ...

  9. Extjs 自定义控件

    // JavaScript Document Ext.namespace('CRM.Panels'); CRM.Panels.UserDetail = Ext.extend(Ext.Panel,{ w ...

  10. row_number()over函数的使用(转)

    (转)http://hi.baidu.com/122439049/blog/item/0c9c48131b2734d5f7039e13.html row_number() OVER (PARTITIO ...