Convolution and polynomial multiplication
https://www.mathworks.com/help/matlab/ref/conv.html?s_tid=gn_loc_drop
conv
Convolution and polynomial multiplication
Description
w = conv( returns the convolution of vectors u,v)u and v. If u and v are vectors of polynomial coefficients, convolving them is equivalent to multiplying the two polynomials.
Examples
Polynomial Multiplication via Convolution
Create vectors u and v containing the coefficients of the polynomials
and
.
u = [1 0 1];
v = [2 7];
Use convolution to multiply the polynomials.
w = conv(u,v)
w =
2 7 2 7
w contains the polynomial coefficients for
.
Vector Convolution
Create two vectors and convolve them.
u = [1 1 1];
v = [1 1 0 0 0 1 1];
w = conv(u,v)
w =
1 2 2 1 0 1 2 2 1
The length of w is length(u)+length(v)-1, which in this example is 9.
Central Part of Convolution
Create two vectors. Find the central part of the convolution of u and v that is the same size as u.
u = [-1 2 3 -2 0 1 2];
v = [2 4 -1 1];
w = conv(u,v,'same')
w =
15 5 -9 7 6 7 -1
w has a length of 7. The full convolution would be of length length(u)+length(v)-1, which in this example would be 10.
Input Arguments
u,v — Input vectors
vectors
Input vectors, specified as either row or column vectors. The
output vector is the same orientation as the first input argument, u.
The vectors u and v can be different
lengths or data types.
Data Types: double | single
Complex Number Support: Yes
shape — Subsection of convolution
'full' (default) | 'same' | 'valid'
Subsection of the convolution, specified as 'full', 'same',
or 'valid'.
'full' |
Full convolution (default). |
'same' |
Central part of the convolution of the same size as |
'valid' |
Only those parts of the convolution that are computed |
Convolution
@向量的卷积 重叠面积
The convolution of two vectors, u and v, represents the area of overlap under the points as v slides across u. Algebraically, convolution is the same operation as multiplying polynomials whose coefficients are the elements of u and v.
Let m = length(u) and n = length(v) . Then w is the vector of length m+n-1 whose kth element is

The sum is over all the values of j that lead to legal subscripts for u(j) and v(k-j+1), specifically j = max(1,k+1-n):1:min(k,m). When m = n, this gives
w(1) = u(1)*v(1)
w(2) = u(1)*v(2)+u(2)*v(1)
w(3) = u(1)*v(3)+u(2)*v(2)+u(3)*v(1)
...
w(n) = u(1)*v(n)+u(2)*v(n-1)+ ... +u(n)*v(1)
...
w(2*n-1) = u(n)*v(n)
https://www.zhihu.com/question/22298352?rf=21686447
“
:
卷积就是带权的积分
:
从概率论的角度来理解吧,举例为X Y 两组连续型随机变量,那么令Z=X+Y ,当X Y两组变量独立时,就能推导出卷积公式了,fz=fx*fy的意义就是在于两组变量叠加出来的概率密度,也就是算两信号X Y混叠起来的时候的响应
:
他的女儿是做环保的,有一次她接到一个项目,评估一个地区工厂化学药剂的污染(工厂会排放化学物质,化学物质又会挥发散去),然后建模狮告诉她药剂的残余量是个卷积。她不懂就去问她爸爸,prof就给她解释了。假设t时刻工厂化学药剂的排放量是f(t) mg,被排放的药物在排放后Δt时刻的残留比率是g(Δt) mg/mg;那么在u时刻,对于t时刻排放出来的药物,它们对应的Δt=u-t,于是u时刻化学药剂的总残余量就是∫f(t)g(u-t)dt,这就是卷积了。
”
Convolution and polynomial multiplication的更多相关文章
- Algorithm: 多项式乘法 Polynomial Multiplication: 快速傅里叶变换 FFT / 快速数论变换 NTT
Intro: 本篇博客将会从朴素乘法讲起,经过分治乘法,到达FFT和NTT 旨在能够让读者(也让自己)充分理解其思想 模板题入口:洛谷 P3803 [模板]多项式乘法(FFT) 朴素乘法 约定:两个多 ...
- matlab中卷积convolution与filter用法
转自:https://blog.csdn.net/dkcgx/article/details/46652021 转自:https://blog.csdn.net/Reborn_Lee/article/ ...
- 图像处理之基础---卷积及其快速算法的C++实现
头文件: /* * Copyright (c) 2008-2011 Zhang Ming (M. Zhang), zmjerry@163.com * * This program is free so ...
- 二维码详解(QR Code)
作者:王子旭链接:https://zhuanlan.zhihu.com/p/21463650来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 2016.7.5 更新:长文 ...
- CKKS Part3: CKKS的加密和解密
本篇文章翻译于CKKS EXPLAINED, PART 3: ENCRYPTION AND DECRYPTION,主要介绍CKKS方案的加密和解密. 介绍 在上一篇 CKKS Part2: CKKS的 ...
- FZU 2215 Simple Polynomial Problem(简单多项式问题)
Description 题目描述 You are given an polynomial of x consisting of only addition marks, multiplication ...
- Understanding Convolution in Deep Learning
Understanding Convolution in Deep Learning Convolution is probably the most important concept in dee ...
- polynomial time
https://en.wikipedia.org/wiki/Time_complexity#Polynomial_time An algorithm is said to be of polynomi ...
- POJ1060 Modular multiplication of polynomials解题报告 (2011-12-09 20:27:53)
Modular multiplication of polynomials Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 3 ...
随机推荐
- nodejs基础 -- 交互式解析器(REPL)
------------类似在浏览器中调试js代码----------------------- Node.js REPL(交互式解释器) Node.js REPL(Read Eval Print L ...
- windows 下安装perl Tk 模块
首先,安装activeperl ,安装过程中勾选自动添加PATH环境变量,这样安装后就不需要自己手动修改PATH环境变量: 通过cmd 调出命令行窗口,输入ppm ,然后回车,就开启了perl 的包管 ...
- mysql数据库中,通过mysqladmin工具,创建数据库
需求描述: 今天接触到了mysqladmin工具,主要是一个客户端工具,用来管理mysql server的 可以通过mysqladmin直接创建数据库,而不需要登录到mysql控制台中,在此记录下. ...
- windows,cmd中进行盘符的切换
需求描述: 在工作中,有的时候需要在cmd中进行盘符的切换,以前总有些时候 通过cd来切,就是切换不过去,每次都要进行百度查询,所以,这次就记录下, 留着以后再用. 操作过程: 1.通过win+r-& ...
- Html解析
相关解析组件: HtmlAgilityPack CsQuery Winista.Text.HtmlParser
- ssh&scp指定密钥
scp时指定密钥: scp -P22 -r -i ~/.ssh/dongjing-shanghai.pem root@kiri_pro01:/data/backup/back_from_japan ...
- Solr4.0+IKAnalyzer中文分词安装
1.依赖: JDK1.6,Tomcat 5.5,Solr 4.0.0,IKAnalyzer 2012FF Tomcat虽然不是必须,但觉得上生产环境的话,还是得用Tomcat,便于统一管理和监控. T ...
- ceph 存储安装部署
环境准备 1.三台服务器 cephnode01 192.168.254.83 cephnode02 192.168.254.84 cephnode03 192.168.254.85 2.基本环境配置 ...
- java基础---->Java关于复制的使用(一)
这里简单记录一下java中关于浅复制和深复制的知识.很多时候,一个人选择了行走,不是因为欲望,也并非诱惑,他仅仅是听到了自己内心的声音. java中的复制clone方法 一.java对象的浅复制 一个 ...
- cookie带来的致命危险
1.危险:当记录了过多的cookie时,可能导致http header过大,进而导致服务器端发生错误,导致用户无法打开页面. 2.cookie限制: 各浏览器对单cookie键的限制基本都在4kb左右 ...