Description

给出一棵树,要求你为树上的结点标上权值,权值可以是任意的正整数 唯一的限制条件是相临的两个结点不能标上相同的权值,要求一种方案,使得整棵树的总价值最小。

Input

先给出一个数字N,代表树上有N个点,N<=10000 下面N-1行,代表两个点相连

Output

最小的总权值

Sample Input

10
7 5
1 2
1 7
8 9
4 1
9 7
5 6
10 2
9 3

Sample Output

14

Solution

结论题。权值标号不会大于$log2(n)$。

Code

 #include<iostream>
#include<cstdio>
#include<cmath>
#define N (10009)
using namespace std; struct Edge{int to,next;}edge[N<<];
int n,u,v,f[N][],ans=1e9,LOG2,head[N],num_edge; void add(int u,int v)
{
edge[++num_edge].to=v;
edge[num_edge].next=head[u];
head[u]=num_edge;
} void Dfs(int x,int fa)
{
for (int v1=; v1<=LOG2; ++v1) f[x][v1]=v1;
for (int i=head[x]; i; i=edge[i].next)
if (edge[i].to!=fa)
Dfs(edge[i].to,x);
for (int v1=; v1<=LOG2; ++v1)
{
for (int i=head[x]; i; i=edge[i].next)
if (edge[i].to!=fa)
{
int minn=1e9;
for (int v2=; v2<=LOG2; ++v2)
if (v2!=v1) minn=min(minn,f[edge[i].to][v2]);
f[x][v1]+=minn;
}
}
} int main()
{
scanf("%d",&n);
LOG2=ceil(log10(1.0*n)/log10(2.0));
for (int i=; i<=n-; ++i)
scanf("%d%d",&u,&v), add(u,v), add(v,u);
Dfs(,);
for (int i=; i<=LOG2; ++i) ans=min(ans,f[][i]);
printf("%d\n",ans);
}

BZOJ1369:[Baltic2003]Gem(树形DP)的更多相关文章

  1. 【bzoj1369】[Baltic2003]Gem 树形dp

    题目描述 给出一棵树,要求你为树上的结点标上权值,权值可以是任意的正整数 唯一的限制条件是相临的两个结点不能标上相同的权值,要求一种方案,使得整棵树的总价值最小. 输入 先给出一个数字N,代表树上有N ...

  2. 【BZOJ-1369】Gem 树形DP

    1369: [Baltic2003]Gem Time Limit: 2 Sec  Memory Limit: 64 MBSubmit: 282  Solved: 180[Submit][Status] ...

  3. BZOJ 1369: [Baltic2003]Gem(树形dp)

    传送门 解题思路 直接按奇偶层染色是错的,\(WA\)了好几次,所以要树形\(dp\),感觉最多\(log\)种颜色,不太会证. 代码 #include<iostream> #includ ...

  4. BZOJ_1369_[Baltic2003]Gem_树形DP

    BZOJ_1369_[Baltic2003]Gem_树形DP Description 给出一棵树,要求你为树上的结点标上权值,权值可以是任意的正整数 唯一的限制条件是相临的两个结点不能标上相同的权值, ...

  5. BZOJ1369/LG4395 「BOI2003」Gem 树形DP

    问题描述 LG4395 BZOJ1369 题解 发现对于结点 \(x\) ,其父亲,自己,和所有的孩子权值不同,共 \(3\) 类,从贪心的角度考虑,肯定是填 \(1,2,3\) 这三种. 于是套路树 ...

  6. [bzoj1369][Baltic2003]Gem_树形dp_结论题

    Gem bzoj-1369 Baltic-2003 题目大意:给你一棵树,让你往节点上添自然数,使得任意相邻节点的数不同且使得权值最小. 注释:n为结点个数,$1\le n\le 10^3$. 想法: ...

  7. bzoj 1369: Gem 树形dp

    题目大意 给出一棵树,要求你为树上的结点标上权值,权值可以是任意的正整数 唯一的限制条件是相临的两个结点不能标上相同的权值,要求一种方案,使得整棵树的总价值最小.N<=10000 题解 我们可以 ...

  8. [BOI2003] Gem - 树形dp

    结论 不同颜色数不会超过 \(O(\log n)\) 然后就是很简单的树形dp了 顺便复习一下树形dp怎么写 #include <bits/stdc++.h> using namespac ...

  9. [bzoj1369] [Baltic2003]Gem

    结论题...一棵树里用到的颜色数不超过logn.. f[i][j]表示以i为根的子树里,i的颜色是j的方案数. g[i][j]表示max{f[i][k]},(k!=j #include<cstd ...

随机推荐

  1. SQL Serever学习14——存储过程和触发器

    存储过程 在数据库中很多查询都是大同小异,编写他们费时费力,将他们保存起来,以后执行就很方便了,把SQL语句“封装”起来. 存储过程的概念 存储过程是一组SQL语句集,经过编译存储,可以”一次编译,多 ...

  2. [javaSE] 多线程通信(等待-唤醒机制)

    两个线程操作同一个资源,比如,输入和输出,操作同一个对象,此时两个线程会争夺cpu的执行权,随机的进行切换.我们想实现先输入再输出,顺序的执行 目标对象定义一个标记字段,进行判断,wait()和not ...

  3. hibernate的inverse用法

    Inverse和cascade是Hibernate映射中最难掌握的两个属性.两者都在对象的关联操作中发挥作用. 1.明确inverse和cascade的作用 inverse 决定是否把对对象中集合的改 ...

  4. vim 编辑器常规操作

    所看视频教程:兄弟连Linux云计算视频教程5.1文本编辑器Vim-5.2 插入命令 a:在光标所在字符后插入; A:在光标所在行尾插入; i:在光标所在字符前插入; I:在光标所在字符行行首插入; ...

  5. Groovy中each、find跳出循环

    在groovy中使用break跳出each或者find的循环会会报错,为什么呢?groovy中each.find方法是一个闭包操作,要想跳出循环要使用 return true,但有几个问题有待研究: ...

  6. JSP9大内置对象

    JSP9大内置对象 JSP9个内置对象:out对象 用于输出各种数据reuest对象 封装了来自客户端的各种信息response对象 封装了服务器的响应信息exception对象 封装了程序运行过程中 ...

  7. linux ssh免密登陆

    大致流程: 两台linux系统A B 如果A要登陆到B 1.生成A的密钥对 2.将A的公钥拷贝到B的authorized_keys中即可 可以使用命令:ssh-copy-id -i ~/.ssh/id ...

  8. 第九天- 文件操作 r w a 文件复制/修改

    文件操作简介:使用python来读写文件是非常简单的操作.我们使用 open() 函数来打开一个文件,获取到文件句柄.然后通过文件句柄就可以进行各种各样的操作了.根据打开⽅方式的不同能够执行的操作也会 ...

  9. 前端学习之路之CSS (四)

    Infi-chu: http://www.cnblogs.com/Infi-chu/ CSS盒子模型    概念:CSS盒模型本质上是一个盒子,封装周围的HTML元素,它包括:边距,边框,填充,和实际 ...

  10. Linux VPS主机利用Crontab实现定时重启任务

    第一.安装Crontab可执行环境 一般的VPS/服务器是支持的,但是有些可能没有支持就需要我们来给予安装. A - centos系统 #安装Crontab yum install vixie-cro ...