题目:http://acm.hdu.edu.cn/showproblem.php?pid=1573

题目解析;HDU就是坑,就是因为n,m定义成了__int64就WAY,改成int就A了,无语。

这题就是求解一元线性同余方程组的解满组小于正整数n的数目。最小正整数的解为X=(X*(c/d)%t+t)%t;
  X=a1*X+r1;其中X为扩展欧几里得解出来的特解,这m个方程组的循环区间为lcm(a1,a2,a3...am),
所以答案为(n-X)/lcm+1;

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <math.h>
using namespace std;
__int64 a,b,c,d;
__int64 X,Y;
__int64 gcd(__int64 A,__int64 B)
{
return B==?A:gcd(B,A%B);
}
void extend(__int64 A,__int64 B,__int64 &d,__int64 &x1,__int64 &y1)
{
if(B==)
{
x1=;
y1=;
d=A;
return ;
}
extend(B,A%B,d,x1,y1);
__int64 temp=x1;
x1=y1;
y1=temp-(A/B)*y1;
return ;
}
int main()
{
__int64 S[],E[];
__int64 a1,r1,a2,r2,Lcm;
__int64 T;
int n,m;
scanf("%I64d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
Lcm=;
for(int i=; i<=m; i++)
{
scanf("%I64d",&S[i]);
Lcm=Lcm/gcd(Lcm,S[i])*S[i];//在一定程度上可以防止爆类型(Lcm*S[i]/gcd())
}
for(int i=; i<=m; i++)
{
scanf("%I64d",&E[i]);
}
bool ifhave=true;
a1=S[],r1=E[];
for(__int64 i=; i<=m; i++)
{
a2=S[i],r2=E[i];
a=a1;
b=a2;
c=r2-r1;
extend(a,b,d,X,Y);
if(c%d)
{
ifhave=false;
break;
}
__int64 t=b/d;
X=(X*(c/d)%t+t)%t;
X=a1*X+r1;
a1=a1*(a2/d);
r1=X;
}
__int64 ans=;
if(!ifhave)
{
printf("0\n");
continue;
}
if(r1<=n) ans=+(n-r1)/Lcm;
if(r1==&&ans)
ans--;
printf("%I64d\n",ans);
}
return ;
}

HDU1573:X问题(解一元线性同余方程组)的更多相关文章

  1. HDU1573 X问题【一元线性同余方程组】

    题目链接: http://acm.hdu.edu.cn/showproblem.php? pid=1573 题目大意: 求在小于等于N的正整数中有多少个X满足:X mod a[0] = b[0], X ...

  2. HDU3579:Hello Kiki(解一元线性同余方程组)

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=3579 题目解析:求一元线性同余方程组的最小解X,需要注意的是如果X等于0,需要加上方程组通解的整数区间lc ...

  3. POJ2891:Strange Way to Express Integers(解一元线性同余方程组)

    写一下自己的理解,下面附上转载的:若a==b(modk);//这里的==指的是同余,我用=表示相等(a%k=b)a-b=kt(t为整数)以前理解的错误思想:以前认为上面的形式+(a-tb=k)也是成立 ...

  4. 【POJ 2891】Strange Way to Express Integers(一元线性同余方程组求解)

    Description Elina is reading a book written by Rujia Liu, which introduces a strange way to express ...

  5. POJ 1061 - 青蛙的约会 - [exgcd求解一元线性同余方程]

    先上干货: 定理1: 如果d = gcd(a,b),则必能找到正的或负的整数k和l,使ax + by = d. (参考exgcd:http://www.cnblogs.com/dilthey/p/68 ...

  6. POJ2115:C Looooops(一元线性同余方程)

    题目: http://poj.org/problem?id=2115 要求: 会求最优解,会求这d个解,即(x+(i-1)*b/d)modm;(看最后那个博客的链接地址) 前两天用二元一次线性方程解过 ...

  7. AcWing 204. 表达整数的奇怪方式 (线性同余方程组)打卡

    给定2n个整数a1,a2,…,ana1,a2,…,an和m1,m2,…,mnm1,m2,…,mn,求一个最小的整数x,满足∀i∈[1,n],x≡mi(mod ai)∀i∈[1,n],x≡mi(mod  ...

  8. poj3708(公式化简+大数进制装换+线性同余方程组)

    刚看到这个题目,有点被吓到,毕竟自己这么弱. 分析了很久,然后发现m,k都可以唯一的用d进制表示.也就是用一个ai,和很多个bi唯一构成. 这点就是解题的关键了. 之后可以发现每次调用函数f(x),相 ...

  9. hdu1573(线性同余方程组)

    套模板,因为要是正整数,所以处理一下x=0的情况. X问题 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

随机推荐

  1. 移动端meta 解释

    移动端meta 解释 <meta name="viewport" content="width=device-width, initial-scale=1.0, u ...

  2. zookeeper 系列文章

    http://blog.csdn.net/tswisdom/article/details/41522069 http://blog.csdn.net/tswisdom/article/details ...

  3. mybatis由浅入深day02_9逆向工程

    9 逆向工程 9.1 什么是逆向工程 mybaits需要程序员自己编写sql语句,mybatis官方提供逆向工程 可以针对单表自动生成mybatis执行所需要的代码(mapper.java,mappe ...

  4. ref 属性使用eslint报错

    react 使用 ref 报错 ,[eslint] Using string literals in ref attributes is deprecated. (react/no-string-re ...

  5. GIS-002-gdal2srtmtiles使用注意事项

    本次安装和配置过程重点参考了: 1.http://blog.csdn.net/wjkwjk/article/details/52560236 2.http://blog.csdn.net/wjkwjk ...

  6. 实现Runnable接口和继承Thread类区别

    如果一个类继承Thread,则不适合资源共享.但是如果实现了Runable接口的话,则很容易的实现资源共享. 实现Runnable接口比继承Thread类所具有的优势: 1):适合多个相同的程序代码的 ...

  7. 如何让IOS中的文本实现3D效果

    本转载至 http://bbs.aliyun.com/read/181991.html?spm=5176.7114037.1996646101.25.p0So7c&pos=9       zh ...

  8. php第一例

    参考 例子 https://www.cnblogs.com/chinajins/p/5622342.html 配置多个网站 https://blog.csdn.net/win7system/artic ...

  9. 图解利用vmware工具进行虚拟机克隆

    在vmware上创建一台完整的虚拟机,在该创建的虚拟机上进行克隆,先关闭创建的虚拟机,然后选中你要克隆的虚拟机,右击->管理->克隆,然后点击下一步,如下图所示: 2 然后点击下一步,如下 ...

  10. C、C++编程入口,常见的编程题

    1.设计一个从5个数中取最小数和最大数的程序. 2.#include<stdio.h> 3.int min(int a[],int i); 4.int max(int a[],int i) ...