Critical Regions和Guarded Regions区别
KeEnterCriticalRegion和KeLeaveCriticalRegion配合使用,能禁止用户模式APC和普通内核模式APC的调用,但是不能禁止特殊内核模式的调用(NormalRoutine为空的内核模式APC)
KeEnterGuardedRegion和KeLeaveGuardedRegion能禁止所有APC调用
KeEnterCriticalRegion会调用KeEnterCriticalRegionThread()函数,再看看KeEnterCriticalRegionThread()的内部实现
FORCEINLINE
VOID
KeEnterCriticalRegionThread (
PKTHREAD Thread
) /*++ Routine Description: This function disables kernel APC's for the current thread. N.B. The following code does not require any interlocks. There are
two cases of interest: 1) On an MP system, the thread cannot
be running on two processors as once, and 2) if the thread is
is interrupted to deliver a kernel mode APC which also calls
this routine, the values read and stored will stack and unstack
properly. Arguments: Thread - Supplies a pointer to the current thread. N.B. This must be a pointer to the current thread. Return Value: None. --*/ { ASSERT(Thread == KeGetCurrentThread()); ASSERT((Thread->KernelApcDisable <= ) && (Thread->KernelApcDisable != -)); Thread->KernelApcDisable -= ;
KeMemoryBarrierWithoutFence();
return;
}
KeEnterGuardRegion会调用KeEnterGuardRegionThread()函数,再看看KeEnterGuardRegionThread()的内部实现
FORCEINLINE
VOID
KeEnterGuardedRegionThread (
IN PKTHREAD Thread
) /*++ Routine Description: This function disables special kernel APC's for the current thread. N.B. The following code does not require any interlocks. There are
two cases of interest: 1) On an MP system, the thread cannot
be running on two processors as once, and 2) if the thread is
is interrupted to deliver a kernel mode APC which also calls
this routine, the values read and stored will stack and unstack
properly. Arguments: Thread - Supplies a pointer to the current thread. N.B. This must be a pointer to the current thread. Return Value: None. --*/ { ASSERT(KeGetCurrentIrql() <= APC_LEVEL); ASSERT(Thread == KeGetCurrentThread()); ASSERT((Thread->SpecialApcDisable <= ) && (Thread->SpecialApcDisable != -)); Thread->SpecialApcDisable -= ;
KeMemoryBarrierWithoutFence();
return;
}
注意两者之间的区别
KeEnterCriticalRegionThread中为
Thread->KernelApcDisable -= 1;
KeEnterGuardRegionThread中为
Thread->SpecialApcDisable -= 1;
再看看这里的改变会对APC的派发有什么影响,查看KiDeliverApc函数代码
VOID
KiDeliverApc (
IN KPROCESSOR_MODE PreviousMode,
IN PKEXCEPTION_FRAME ExceptionFrame,
IN PKTRAP_FRAME TrapFrame
) /*++ Routine Description: This function is called from the APC interrupt code and when one or
more of the APC pending flags are set at system exit and the previous
IRQL is zero. All special kernel APC's are delivered first, followed
by normal kernel APC's if one is not already in progress, and finally
if the user APC queue is not empty, the user APC pending flag is set,
and the previous mode is user, then a user APC is delivered. On entry
to this routine IRQL is set to APC_LEVEL. N.B. The exception frame and trap frame addresses are only guaranteed
to be valid if, and only if, the previous mode is user. Arguments: PreviousMode - Supplies the previous processor mode. ExceptionFrame - Supplies a pointer to an exception frame. TrapFrame - Supplies a pointer to a trap frame. Return Value: None. --*/ { PKAPC Apc;
PKKERNEL_ROUTINE KernelRoutine;
KLOCK_QUEUE_HANDLE LockHandle;
PLIST_ENTRY NextEntry;
PVOID NormalContext;
PKNORMAL_ROUTINE NormalRoutine;
PKTRAP_FRAME OldTrapFrame;
PKPROCESS Process;
PVOID SystemArgument1;
PVOID SystemArgument2;
PKTHREAD Thread; //
// If the thread was interrupted in the middle of the SLIST pop code,
// then back up the PC to the start of the SLIST pop.
// if (TrapFrame != NULL) {
KiCheckForSListAddress(TrapFrame);
} //
// Save the current thread trap frame address and set the thread trap
// frame address to the new trap frame. This will prevent a user mode
// exception from being raised within an APC routine.
// Thread = KeGetCurrentThread();
OldTrapFrame = Thread->TrapFrame;
Thread->TrapFrame = TrapFrame; //
// If special APC are not disabled, then attempt to deliver one or more
// APCs.
// Process = Thread->ApcState.Process;
Thread->ApcState.KernelApcPending = FALSE;
if (Thread->SpecialApcDisable == ) { //
// If the kernel APC queue is not empty, then attempt to deliver a
// kernel APC.
//
// N.B. The following test is not synchronized with the APC insertion
// code. However, when an APC is inserted in the kernel queue of
// a running thread an APC interrupt is requested. Therefore, if
// the following test were to falsely return that the kernel APC
// queue was empty, an APC interrupt would immediately cause this
// code to be executed a second time in which case the kernel APC
// queue would found to contain an entry.
// KeMemoryBarrier();
while (IsListEmpty(&Thread->ApcState.ApcListHead[KernelMode]) == FALSE) { //
// Raise IRQL to dispatcher level, lock the APC queue, and check
// if any kernel mode APC's can be delivered.
//
// If the kernel APC queue is now empty because of the removal of
// one or more entries, then release the APC lock, and attempt to
// deliver a user APC.
// KeAcquireInStackQueuedSpinLock(&Thread->ApcQueueLock, &LockHandle);
NextEntry = Thread->ApcState.ApcListHead[KernelMode].Flink;
if (NextEntry == &Thread->ApcState.ApcListHead[KernelMode]) {
KeReleaseInStackQueuedSpinLock(&LockHandle);
break;
} //
// Clear kernel APC pending, get the address of the APC object,
// and determine the type of APC.
//
// N.B. Kernel APC pending must be cleared each time the kernel
// APC queue is found to be non-empty.
// Thread->ApcState.KernelApcPending = FALSE;
Apc = CONTAINING_RECORD(NextEntry, KAPC, ApcListEntry);
ReadForWriteAccess(Apc);
KernelRoutine = Apc->KernelRoutine;
NormalRoutine = Apc->NormalRoutine;
NormalContext = Apc->NormalContext;
SystemArgument1 = Apc->SystemArgument1;
SystemArgument2 = Apc->SystemArgument2;
if (NormalRoutine == (PKNORMAL_ROUTINE)NULL) { //
// First entry in the kernel APC queue is a special kernel APC.
// Remove the entry from the APC queue, set its inserted state
// to FALSE, release dispatcher database lock, and call the kernel
// routine. On return raise IRQL to dispatcher level and lock
// dispatcher database lock.
// RemoveEntryList(NextEntry);
Apc->Inserted = FALSE;
KeReleaseInStackQueuedSpinLock(&LockHandle);
(KernelRoutine)(Apc,
&NormalRoutine,
&NormalContext,
&SystemArgument1,
&SystemArgument2); #if DBG if (KeGetCurrentIrql() != LockHandle.OldIrql) {
KeBugCheckEx(IRQL_UNEXPECTED_VALUE,
KeGetCurrentIrql() << | LockHandle.OldIrql << ,
(ULONG_PTR)KernelRoutine,
(ULONG_PTR)Apc,
(ULONG_PTR)NormalRoutine);
} #endif } else { //
// First entry in the kernel APC queue is a normal kernel APC.
// If there is not a normal kernel APC in progress and kernel
// APC's are not disabled, then remove the entry from the APC
// queue, set its inserted state to FALSE, release the APC queue
// lock, call the specified kernel routine, set kernel APC in
// progress, lower the IRQL to zero, and call the normal kernel
// APC routine. On return raise IRQL to dispatcher level, lock
// the APC queue, and clear kernel APC in progress.
// if ((Thread->ApcState.KernelApcInProgress == FALSE) &&
(Thread->KernelApcDisable == )) { RemoveEntryList(NextEntry);
Apc->Inserted = FALSE;
KeReleaseInStackQueuedSpinLock(&LockHandle);
(KernelRoutine)(Apc,
&NormalRoutine,
&NormalContext,
&SystemArgument1,
&SystemArgument2); #if DBG if (KeGetCurrentIrql() != LockHandle.OldIrql) {
KeBugCheckEx(IRQL_UNEXPECTED_VALUE,
KeGetCurrentIrql() << | LockHandle.OldIrql << | ,
(ULONG_PTR)KernelRoutine,
(ULONG_PTR)Apc,
(ULONG_PTR)NormalRoutine);
} #endif if (NormalRoutine != (PKNORMAL_ROUTINE)NULL) {
Thread->ApcState.KernelApcInProgress = TRUE;
KeLowerIrql();
(NormalRoutine)(NormalContext,
SystemArgument1,
SystemArgument2); KeRaiseIrql(APC_LEVEL, &LockHandle.OldIrql);
} Thread->ApcState.KernelApcInProgress = FALSE; } else {
KeReleaseInStackQueuedSpinLock(&LockHandle);
goto CheckProcess;
}
}
} //
// Kernel APC queue is empty. If the previous mode is user, user APC
// pending is set, and the user APC queue is not empty, then remove
// the first entry from the user APC queue, set its inserted state to
// FALSE, clear user APC pending, release the dispatcher database lock,
// and call the specified kernel routine. If the normal routine address
// is not NULL on return from the kernel routine, then initialize the
// user mode APC context and return. Otherwise, check to determine if
// another user mode APC can be processed.
//
// N.B. There is no race condition associated with checking the APC
// queue outside the APC lock. User APCs are always delivered at
// system exit and never interrupt the execution of the thread
// in the kernel.
// if ((PreviousMode == UserMode) &&
(IsListEmpty(&Thread->ApcState.ApcListHead[UserMode]) == FALSE) &&
(Thread->ApcState.UserApcPending != FALSE)) { //
// Raise IRQL to dispatcher level, lock the APC queue, and deliver
// a user mode APC.
// KeAcquireInStackQueuedSpinLock(&Thread->ApcQueueLock, &LockHandle); //
// If the user APC queue is now empty because of the removal of
// one or more entries, then release the APC lock and exit.
// Thread->ApcState.UserApcPending = FALSE;
NextEntry = Thread->ApcState.ApcListHead[UserMode].Flink;
if (NextEntry == &Thread->ApcState.ApcListHead[UserMode]) {
KeReleaseInStackQueuedSpinLock(&LockHandle);
goto CheckProcess;
} Apc = CONTAINING_RECORD(NextEntry, KAPC, ApcListEntry);
ReadForWriteAccess(Apc);
KernelRoutine = Apc->KernelRoutine;
NormalRoutine = Apc->NormalRoutine;
NormalContext = Apc->NormalContext;
SystemArgument1 = Apc->SystemArgument1;
SystemArgument2 = Apc->SystemArgument2;
RemoveEntryList(NextEntry);
Apc->Inserted = FALSE;
KeReleaseInStackQueuedSpinLock(&LockHandle);
(KernelRoutine)(Apc,
&NormalRoutine,
&NormalContext,
&SystemArgument1,
&SystemArgument2); if (NormalRoutine == (PKNORMAL_ROUTINE)NULL) {
KeTestAlertThread(UserMode); } else {
KiInitializeUserApc(ExceptionFrame,
TrapFrame,
NormalRoutine,
NormalContext,
SystemArgument1,
SystemArgument2);
}
}
} //
// Check if process was attached during the APC routine.
// CheckProcess:
if (Thread->ApcState.Process != Process) {
KeBugCheckEx(INVALID_PROCESS_ATTACH_ATTEMPT,
(ULONG_PTR)Process,
(ULONG_PTR)Thread->ApcState.Process,
(ULONG)Thread->ApcStateIndex,
(ULONG)KeIsExecutingDpc());
} //
// Restore the previous thread trap frame address.
// Thread->TrapFrame = OldTrapFrame;
return;
}
可以看到,这个函数会判断Thread->SpecialApcDisable 和 Thread->KernelApcSidable 的值,如果Thread->SpecialApcDisable 为0,会先派发特殊内核APC,然后判断Thread->KernelApcDisable是否为0,为0 就去进一步的派发普通内核 Apc和 用户Apc
后续再补充代码实现细节.
Critical Regions和Guarded Regions区别的更多相关文章
- Windows内核开发-6-内核机制 Kernel Mechanisms
Windows内核开发-6-内核机制 Kernel Mechanisms 一部分Windows的内核机制对于驱动开发很有帮助,还有一部分对于内核理解和调试也很有帮助. Interrupt Reques ...
- [REP]AWS Regions and Availability Zones: the simplest explanation you will ever find around
When it comes to Amazon Web Services, there are two concepts that are extremely important and spanni ...
- Windows Kernel Security Training Courses
http://www.codemachine.com/courses.html#kerdbg Windows Kernel Internals for Security Researchers Thi ...
- C puzzles详解【51-57题】
第五十一题 Write a C function which does the addition of two integers without using the '+' operator. You ...
- mser 最大稳定极值区域(文字区域定位)算法 附完整C代码
mser 的全称:Maximally Stable Extremal Regions 第一次听说这个算法时,是来自当时部门的一个同事, 提及到他的项目用它来做文字区域的定位,对这个算法做了一些优化. ...
- Hbase学习02
第2章 Apache HBase配置 本章在“入门”一章中进行了扩展,以进一步解释Apache HBase的配置. 请仔细阅读本章,特别是基本先决条件,确保您的HBase测试和部署顺利进行,并防止数据 ...
- fasta/fastq格式解读
1)知识简介--------------------------------------------------------1.1)测序质量值 首先在了解fastq,fasta之前,了解一下什么是质量 ...
- [libgdx游戏开发教程]使用Libgdx进行游戏开发(4)-素材管理
游戏中总是有大量的图像资源,我们通常的做法是把要用的图片做成图片集,这样做的好处就不多说了.直接来看怎么用. 这里我们使用自己的类Assets来管理它们,让这个工具类作为我们的资源管家,从而可以在任何 ...
- 目标检测之线段检测---lsd line segment detector
(1)线段检测应用背景 (2)线段检测原理简介 (3)线段检测实例 a line segment detector (4)hough 变换和 lsd 的区别 --------------------- ...
随机推荐
- 采购文件中 RFI、RFQ、RFP、IFB的区别
[PMBOK的描述] 采购文件用于征求潜在卖方的建议书.如果主要依据价格来选择卖方(如购买商业或标准产品时),通常就使用标书.投标或报价等术语.如果主要依据其他考虑(如技术能力或技术方法)来选择卖方, ...
- 开源WebGIS实施方案(三):Shapefile数据导入到PostGIS
PostGIS新版中提供了一个可视化的工具,用于Shapefile数据的导入和导出,极大的方便了使用者的操作. 创建空间数据库 以具有创建用户权限的账号登录pgAdminIII,连接到数据库 创建一个 ...
- python signal
在了解了Linux的信号基础之 后,Python标准库中的signal包就很容易学习和理解.signal包负责在Python程序内部处理信号,典型的操作包括预设信号处理函数,暂 停并等待信号,以及定时 ...
- docker 操作命令详解
docker attach命令-登录一个已经在执行的容器 docker build 命令-建立一个新的image docker commit命令-提交一个新的image docker cp命令-将容器 ...
- Python 用队列实现多线程并发
# Python queue队列,实现并发,在网站多线程推荐最后也一个例子,比这货简单,但是不够规范 # encoding: utf-8 __author__ = 'yeayee.com' # 由本站 ...
- Linux下安装pip(遇到了python2.6升级为python2.7道路上的坑,原因已经找到,只差临门一脚了,以后补上)
1.先说一下什么是pippip 是“A tool for installing and managing Python packages.”,也就是说pip是python的软件安装工具2.下面介绍怎么 ...
- Logstash配置总结和实例
这里记录Logstash配置中注意的事项: 整个配置文件分为三部分:input,filter,output.参考这里的介绍 https://www.elastic.co/guide/en/logsta ...
- [CSS3] 边栏导航动画
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- PHP开始1 php的命名规范
常量 php 中有一些预定义常量,我们常常称他们为'魔术常量'. __LINE__ 返回文件中的当前行号 __FILE__ 返回该文件的完整路径和文件名 __DI ...
- php 逐行读取文本文件
在读取文本时,我们要注意一个事情,那就是换行符,应为我们在写文档时会手动换行,这个换行符需不需要保存就要看自己的需求了. 这里封装了两个方法,一个保留换行,一个不保留.$path为文件路径+文件名 1 ...