Critical Regions和Guarded Regions区别
KeEnterCriticalRegion和KeLeaveCriticalRegion配合使用,能禁止用户模式APC和普通内核模式APC的调用,但是不能禁止特殊内核模式的调用(NormalRoutine为空的内核模式APC)
KeEnterGuardedRegion和KeLeaveGuardedRegion能禁止所有APC调用
KeEnterCriticalRegion会调用KeEnterCriticalRegionThread()函数,再看看KeEnterCriticalRegionThread()的内部实现
FORCEINLINE
VOID
KeEnterCriticalRegionThread (
PKTHREAD Thread
) /*++ Routine Description: This function disables kernel APC's for the current thread. N.B. The following code does not require any interlocks. There are
two cases of interest: 1) On an MP system, the thread cannot
be running on two processors as once, and 2) if the thread is
is interrupted to deliver a kernel mode APC which also calls
this routine, the values read and stored will stack and unstack
properly. Arguments: Thread - Supplies a pointer to the current thread. N.B. This must be a pointer to the current thread. Return Value: None. --*/ { ASSERT(Thread == KeGetCurrentThread()); ASSERT((Thread->KernelApcDisable <= ) && (Thread->KernelApcDisable != -)); Thread->KernelApcDisable -= ;
KeMemoryBarrierWithoutFence();
return;
}
KeEnterGuardRegion会调用KeEnterGuardRegionThread()函数,再看看KeEnterGuardRegionThread()的内部实现
FORCEINLINE
VOID
KeEnterGuardedRegionThread (
IN PKTHREAD Thread
) /*++ Routine Description: This function disables special kernel APC's for the current thread. N.B. The following code does not require any interlocks. There are
two cases of interest: 1) On an MP system, the thread cannot
be running on two processors as once, and 2) if the thread is
is interrupted to deliver a kernel mode APC which also calls
this routine, the values read and stored will stack and unstack
properly. Arguments: Thread - Supplies a pointer to the current thread. N.B. This must be a pointer to the current thread. Return Value: None. --*/ { ASSERT(KeGetCurrentIrql() <= APC_LEVEL); ASSERT(Thread == KeGetCurrentThread()); ASSERT((Thread->SpecialApcDisable <= ) && (Thread->SpecialApcDisable != -)); Thread->SpecialApcDisable -= ;
KeMemoryBarrierWithoutFence();
return;
}
注意两者之间的区别
KeEnterCriticalRegionThread中为
Thread->KernelApcDisable -= 1;
KeEnterGuardRegionThread中为
Thread->SpecialApcDisable -= 1;
再看看这里的改变会对APC的派发有什么影响,查看KiDeliverApc函数代码
VOID
KiDeliverApc (
IN KPROCESSOR_MODE PreviousMode,
IN PKEXCEPTION_FRAME ExceptionFrame,
IN PKTRAP_FRAME TrapFrame
) /*++ Routine Description: This function is called from the APC interrupt code and when one or
more of the APC pending flags are set at system exit and the previous
IRQL is zero. All special kernel APC's are delivered first, followed
by normal kernel APC's if one is not already in progress, and finally
if the user APC queue is not empty, the user APC pending flag is set,
and the previous mode is user, then a user APC is delivered. On entry
to this routine IRQL is set to APC_LEVEL. N.B. The exception frame and trap frame addresses are only guaranteed
to be valid if, and only if, the previous mode is user. Arguments: PreviousMode - Supplies the previous processor mode. ExceptionFrame - Supplies a pointer to an exception frame. TrapFrame - Supplies a pointer to a trap frame. Return Value: None. --*/ { PKAPC Apc;
PKKERNEL_ROUTINE KernelRoutine;
KLOCK_QUEUE_HANDLE LockHandle;
PLIST_ENTRY NextEntry;
PVOID NormalContext;
PKNORMAL_ROUTINE NormalRoutine;
PKTRAP_FRAME OldTrapFrame;
PKPROCESS Process;
PVOID SystemArgument1;
PVOID SystemArgument2;
PKTHREAD Thread; //
// If the thread was interrupted in the middle of the SLIST pop code,
// then back up the PC to the start of the SLIST pop.
// if (TrapFrame != NULL) {
KiCheckForSListAddress(TrapFrame);
} //
// Save the current thread trap frame address and set the thread trap
// frame address to the new trap frame. This will prevent a user mode
// exception from being raised within an APC routine.
// Thread = KeGetCurrentThread();
OldTrapFrame = Thread->TrapFrame;
Thread->TrapFrame = TrapFrame; //
// If special APC are not disabled, then attempt to deliver one or more
// APCs.
// Process = Thread->ApcState.Process;
Thread->ApcState.KernelApcPending = FALSE;
if (Thread->SpecialApcDisable == ) { //
// If the kernel APC queue is not empty, then attempt to deliver a
// kernel APC.
//
// N.B. The following test is not synchronized with the APC insertion
// code. However, when an APC is inserted in the kernel queue of
// a running thread an APC interrupt is requested. Therefore, if
// the following test were to falsely return that the kernel APC
// queue was empty, an APC interrupt would immediately cause this
// code to be executed a second time in which case the kernel APC
// queue would found to contain an entry.
// KeMemoryBarrier();
while (IsListEmpty(&Thread->ApcState.ApcListHead[KernelMode]) == FALSE) { //
// Raise IRQL to dispatcher level, lock the APC queue, and check
// if any kernel mode APC's can be delivered.
//
// If the kernel APC queue is now empty because of the removal of
// one or more entries, then release the APC lock, and attempt to
// deliver a user APC.
// KeAcquireInStackQueuedSpinLock(&Thread->ApcQueueLock, &LockHandle);
NextEntry = Thread->ApcState.ApcListHead[KernelMode].Flink;
if (NextEntry == &Thread->ApcState.ApcListHead[KernelMode]) {
KeReleaseInStackQueuedSpinLock(&LockHandle);
break;
} //
// Clear kernel APC pending, get the address of the APC object,
// and determine the type of APC.
//
// N.B. Kernel APC pending must be cleared each time the kernel
// APC queue is found to be non-empty.
// Thread->ApcState.KernelApcPending = FALSE;
Apc = CONTAINING_RECORD(NextEntry, KAPC, ApcListEntry);
ReadForWriteAccess(Apc);
KernelRoutine = Apc->KernelRoutine;
NormalRoutine = Apc->NormalRoutine;
NormalContext = Apc->NormalContext;
SystemArgument1 = Apc->SystemArgument1;
SystemArgument2 = Apc->SystemArgument2;
if (NormalRoutine == (PKNORMAL_ROUTINE)NULL) { //
// First entry in the kernel APC queue is a special kernel APC.
// Remove the entry from the APC queue, set its inserted state
// to FALSE, release dispatcher database lock, and call the kernel
// routine. On return raise IRQL to dispatcher level and lock
// dispatcher database lock.
// RemoveEntryList(NextEntry);
Apc->Inserted = FALSE;
KeReleaseInStackQueuedSpinLock(&LockHandle);
(KernelRoutine)(Apc,
&NormalRoutine,
&NormalContext,
&SystemArgument1,
&SystemArgument2); #if DBG if (KeGetCurrentIrql() != LockHandle.OldIrql) {
KeBugCheckEx(IRQL_UNEXPECTED_VALUE,
KeGetCurrentIrql() << | LockHandle.OldIrql << ,
(ULONG_PTR)KernelRoutine,
(ULONG_PTR)Apc,
(ULONG_PTR)NormalRoutine);
} #endif } else { //
// First entry in the kernel APC queue is a normal kernel APC.
// If there is not a normal kernel APC in progress and kernel
// APC's are not disabled, then remove the entry from the APC
// queue, set its inserted state to FALSE, release the APC queue
// lock, call the specified kernel routine, set kernel APC in
// progress, lower the IRQL to zero, and call the normal kernel
// APC routine. On return raise IRQL to dispatcher level, lock
// the APC queue, and clear kernel APC in progress.
// if ((Thread->ApcState.KernelApcInProgress == FALSE) &&
(Thread->KernelApcDisable == )) { RemoveEntryList(NextEntry);
Apc->Inserted = FALSE;
KeReleaseInStackQueuedSpinLock(&LockHandle);
(KernelRoutine)(Apc,
&NormalRoutine,
&NormalContext,
&SystemArgument1,
&SystemArgument2); #if DBG if (KeGetCurrentIrql() != LockHandle.OldIrql) {
KeBugCheckEx(IRQL_UNEXPECTED_VALUE,
KeGetCurrentIrql() << | LockHandle.OldIrql << | ,
(ULONG_PTR)KernelRoutine,
(ULONG_PTR)Apc,
(ULONG_PTR)NormalRoutine);
} #endif if (NormalRoutine != (PKNORMAL_ROUTINE)NULL) {
Thread->ApcState.KernelApcInProgress = TRUE;
KeLowerIrql();
(NormalRoutine)(NormalContext,
SystemArgument1,
SystemArgument2); KeRaiseIrql(APC_LEVEL, &LockHandle.OldIrql);
} Thread->ApcState.KernelApcInProgress = FALSE; } else {
KeReleaseInStackQueuedSpinLock(&LockHandle);
goto CheckProcess;
}
}
} //
// Kernel APC queue is empty. If the previous mode is user, user APC
// pending is set, and the user APC queue is not empty, then remove
// the first entry from the user APC queue, set its inserted state to
// FALSE, clear user APC pending, release the dispatcher database lock,
// and call the specified kernel routine. If the normal routine address
// is not NULL on return from the kernel routine, then initialize the
// user mode APC context and return. Otherwise, check to determine if
// another user mode APC can be processed.
//
// N.B. There is no race condition associated with checking the APC
// queue outside the APC lock. User APCs are always delivered at
// system exit and never interrupt the execution of the thread
// in the kernel.
// if ((PreviousMode == UserMode) &&
(IsListEmpty(&Thread->ApcState.ApcListHead[UserMode]) == FALSE) &&
(Thread->ApcState.UserApcPending != FALSE)) { //
// Raise IRQL to dispatcher level, lock the APC queue, and deliver
// a user mode APC.
// KeAcquireInStackQueuedSpinLock(&Thread->ApcQueueLock, &LockHandle); //
// If the user APC queue is now empty because of the removal of
// one or more entries, then release the APC lock and exit.
// Thread->ApcState.UserApcPending = FALSE;
NextEntry = Thread->ApcState.ApcListHead[UserMode].Flink;
if (NextEntry == &Thread->ApcState.ApcListHead[UserMode]) {
KeReleaseInStackQueuedSpinLock(&LockHandle);
goto CheckProcess;
} Apc = CONTAINING_RECORD(NextEntry, KAPC, ApcListEntry);
ReadForWriteAccess(Apc);
KernelRoutine = Apc->KernelRoutine;
NormalRoutine = Apc->NormalRoutine;
NormalContext = Apc->NormalContext;
SystemArgument1 = Apc->SystemArgument1;
SystemArgument2 = Apc->SystemArgument2;
RemoveEntryList(NextEntry);
Apc->Inserted = FALSE;
KeReleaseInStackQueuedSpinLock(&LockHandle);
(KernelRoutine)(Apc,
&NormalRoutine,
&NormalContext,
&SystemArgument1,
&SystemArgument2); if (NormalRoutine == (PKNORMAL_ROUTINE)NULL) {
KeTestAlertThread(UserMode); } else {
KiInitializeUserApc(ExceptionFrame,
TrapFrame,
NormalRoutine,
NormalContext,
SystemArgument1,
SystemArgument2);
}
}
} //
// Check if process was attached during the APC routine.
// CheckProcess:
if (Thread->ApcState.Process != Process) {
KeBugCheckEx(INVALID_PROCESS_ATTACH_ATTEMPT,
(ULONG_PTR)Process,
(ULONG_PTR)Thread->ApcState.Process,
(ULONG)Thread->ApcStateIndex,
(ULONG)KeIsExecutingDpc());
} //
// Restore the previous thread trap frame address.
// Thread->TrapFrame = OldTrapFrame;
return;
}
可以看到,这个函数会判断Thread->SpecialApcDisable 和 Thread->KernelApcSidable 的值,如果Thread->SpecialApcDisable 为0,会先派发特殊内核APC,然后判断Thread->KernelApcDisable是否为0,为0 就去进一步的派发普通内核 Apc和 用户Apc
后续再补充代码实现细节.
Critical Regions和Guarded Regions区别的更多相关文章
- Windows内核开发-6-内核机制 Kernel Mechanisms
Windows内核开发-6-内核机制 Kernel Mechanisms 一部分Windows的内核机制对于驱动开发很有帮助,还有一部分对于内核理解和调试也很有帮助. Interrupt Reques ...
- [REP]AWS Regions and Availability Zones: the simplest explanation you will ever find around
When it comes to Amazon Web Services, there are two concepts that are extremely important and spanni ...
- Windows Kernel Security Training Courses
http://www.codemachine.com/courses.html#kerdbg Windows Kernel Internals for Security Researchers Thi ...
- C puzzles详解【51-57题】
第五十一题 Write a C function which does the addition of two integers without using the '+' operator. You ...
- mser 最大稳定极值区域(文字区域定位)算法 附完整C代码
mser 的全称:Maximally Stable Extremal Regions 第一次听说这个算法时,是来自当时部门的一个同事, 提及到他的项目用它来做文字区域的定位,对这个算法做了一些优化. ...
- Hbase学习02
第2章 Apache HBase配置 本章在“入门”一章中进行了扩展,以进一步解释Apache HBase的配置. 请仔细阅读本章,特别是基本先决条件,确保您的HBase测试和部署顺利进行,并防止数据 ...
- fasta/fastq格式解读
1)知识简介--------------------------------------------------------1.1)测序质量值 首先在了解fastq,fasta之前,了解一下什么是质量 ...
- [libgdx游戏开发教程]使用Libgdx进行游戏开发(4)-素材管理
游戏中总是有大量的图像资源,我们通常的做法是把要用的图片做成图片集,这样做的好处就不多说了.直接来看怎么用. 这里我们使用自己的类Assets来管理它们,让这个工具类作为我们的资源管家,从而可以在任何 ...
- 目标检测之线段检测---lsd line segment detector
(1)线段检测应用背景 (2)线段检测原理简介 (3)线段检测实例 a line segment detector (4)hough 变换和 lsd 的区别 --------------------- ...
随机推荐
- sitecore 缓存管理器
namespace XXX.Shared.Infrastructure.Caching { using System; using System.Collections.Generic; using ...
- 代码修改之后MSbuild编译不出最新的dll解决方法
问题: 使用jenkins发布的时候,开发不断反馈自己修改的文件使用jenkins没有发布到测试环境.经过查证发现使用MSBUILD编译的时出现修改的文件编译出的日期不是最新日期,但是使用VS编译就不 ...
- Selenium下拉菜单(Select)的操作-----Selenium快速入门(五)
对于一般元素的操作,我们只要掌握本系列的第二,三章即可大致足够.对于下拉菜单(Select)的操作,Selenium有专门的类Select进行处理.文档地址为:http://seleniumhq.gi ...
- 获取BinaryReader中读取的文件名
BinaryReader br; br = null; br = new BinaryReader(new FileStream("E:demo.txt", FileMode.Op ...
- C#上传文件处理
public class FileHelp : System.Web.UI.Page { /// <summary> /// 保存文件 /// 返回:数组:status[0]:文件名称:s ...
- SQL Server 根据树状结构表生成以/号分割的路由字符串
很多情况下,我们有必要把树形结构进行数据梳理.比如,要方便的过滤出一个父节点下的所有子节点等等... 这个时候,我们可以生成一个路径表字符串,在应用时只需要对该字符串进行索引即可达成目的. 目标:按图 ...
- Using RDP to connect Windows remote desktop with Linux
安装rdesktop(一般情况下不需要这么做): sudo apt-get install rdesktop 执行连接: rdesktop xxx.xxx.xxx.xxx:3389 -u admini ...
- python数据类型详解(全面)
python数据类型详解 目录1.字符串2.布尔类型3.整数4.浮点数5.数字6.列表7.元组8.字典9.日期 1.字符串1.1.如何在Python中使用字符串a.使用单引号(')用单引号括起来表示字 ...
- Java反射与自定义注解
反射,在Java常用框架中屡见不鲜.它存在于java.lang.reflact包中,就我的认识,它可以拿到类的字段和方法,及构造方法,还可以生成对象实例等.对深入的机制我暂时还不了解,本篇文章着重在使 ...
- 使用TortoiseSVN客户端管理IntelliJ IDEA项目的方法
使用TortoiseSVN客户端管理IntelliJ IDEA项目的方法 今天在打开一个使用SVN管理的项目时,IntelliJ IDEA提示: Can't use Subversion comman ...