import heapq
import random class Classifier:
def __init__(self, bucketPrefix, testBucketNumber, dataFormat, k):

      """ 一个分类器将建立与bucketprefix文件
      除textbucketnumber文件。数据格式是一个字符串,
      描述如何解释数据文件的每一行。

      """

        self.medianAndDeviation = []
self.k = k self.format = dataFormat.strip().split('\t')
self.data = [] for i in range(1, 11): if i != testBucketNumber:
filename = "%s-%02i" % (bucketPrefix, i)
f = open(filename)
lines = f.readlines()
f.close()
for line in lines[1:]:
fields = line.strip().split('\t')
ignore = []
vector = []
for i in range(len(fields)): if self.format[i] == 'num':
vector.append(float(fields[i]))
elif self.format[i] == 'comment':
ignore.append(fields[i])
elif self.format[i] == 'class':
classification = fields[i]
self.data.append((classification, vector, ignore))
self.rawData = list(self.data) self.vlen = len(self.data[0][1]) for i in range(self.vlen):
self.normalizeColumn(i) def getMedian(self, alist):
"""返回列表"""
if alist == []:
return []
blist = sorted(alist)
length = len(alist)
if length % 2 == 1: return blist[int(((length + 1) / 2) - 1)]
else: v1 = blist[int(length / 2)]
v2 =blist[(int(length / 2) - 1)]
return (v1 + v2) / 2.0 def getAbsoluteStandardDeviation(self, alist, median):
"""取绝对标准偏差"""
sum = 0
for item in alist:
sum += abs(item - median)
return sum / len(alist) def normalizeColumn(self, columnNumber):
"""给出一列数,规范self.data列"""
# 先提取值列表
col = [v[1][columnNumber] for v in self.data]
median = self.getMedian(col)
asd = self.getAbsoluteStandardDeviation(col, median)
#print("Median: %f ASD = %f" % (median, asd))
self.medianAndDeviation.append((median, asd))
for v in self.data:
v[1][columnNumber] = (v[1][columnNumber] - median) / asd def normalizeVector(self, v):
"""We have stored the median and asd for each column.
We now use them to normalize vector v"""
vector = list(v)
for i in range(len(vector)):
(median, asd) = self.medianAndDeviation[i]
vector[i] = (vector[i] - median) / asd
return vector def testBucket(self, bucketPrefix, bucketNumber):
"""评估分类bucketPrefix-bucketNumber""" filename = "%s-%02i" % (bucketPrefix, bucketNumber)
f = open(filename)
lines = f.readlines()
totals = {}
f.close()
for line in lines:
data = line.strip().split('\t')
vector = []
classInColumn = -1
for i in range(len(self.format)):
if self.format[i] == 'num':
vector.append(float(data[i]))
elif self.format[i] == 'class':
classInColumn = i
theRealClass = data[classInColumn] classifiedAs = self.classify(vector)
totals.setdefault(theRealClass, {})
totals[theRealClass].setdefault(classifiedAs, 0)
totals[theRealClass][classifiedAs] += 1
return totals def manhattan(self, vector1, vector2):
"""计算曼哈顿距离"""
return sum(map(lambda v1, v2: abs(v1 - v2), vector1, vector2)) def knn(self, itemVector):
"""使用K近邻预测itemVector类""" neighbors = heapq.nsmallest(self.k,[(self.manhattan(itemVector, item[1]), item)
for item in self.data]) results = {}
for neighbor in neighbors:
theClass = neighbor[1][0]
results.setdefault(theClass, 0)
results[theClass] += 1
resultList = sorted([(i[1], i[0]) for i in results.items()], reverse=True) maxVotes = resultList[0][0]
possibleAnswers = [i[1] for i in resultList if i[0] == maxVotes] answer = random.choice(possibleAnswers)
return( answer) def classify(self, itemVector):
"""返回类""" return(self.knn(self.normalizeVector(itemVector))) def tenfold(bucketPrefix, dataFormat, k):
results = {}
for i in range(1, 11):
c = Classifier(bucketPrefix, i, dataFormat, k)
t = c.testBucket(bucketPrefix, i)
for (key, value) in t.items():
results.setdefault(key, {})
for (ckey, cvalue) in value.items():
results[key].setdefault(ckey, 0)
results[key][ckey] += cvalue categories = list(results.keys())
categories.sort()
print( "\n Classified as: ")
header = " "
subheader = " +"
for category in categories:
header += "% 2s " % category
subheader += "-----+"
print (header)
print (subheader)
total = 0.0
correct = 0.0
for category in categories:
row = " %s |" % category
for c2 in categories:
if c2 in results[category]:
count = results[category][c2]
else:
count = 0
row += " %3i |" % count
total += count
if c2 == category:
correct += count
print(row)
print(subheader)
print("\n%5.3f percent correct" %((correct * 100) / total))
print("total of %i instances" % total) print("SMALL DATA SET")
tenfold("pimaSmall/pimaSmall",
"num num num num num num num num class", 1)
print("\n\nLARGE DATA SET") tenfold("pima/pima",
"num num num num num num num num class", 1)

  

knn的python代码的更多相关文章

  1. KNN算法原理(python代码实现)

    kNN(k-nearest neighbor algorithm)算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性 ...

  2. 手写算法-python代码实现KNN

    原理解析 KNN-全称K-Nearest Neighbor,最近邻算法,可以做分类任务,也可以做回归任务,KNN是一种简单的机器学习方法,它没有传统意义上训练和学习过程,实现流程如下: 1.在训练数据 ...

  3. 可爱的豆子——使用Beans思想让Python代码更易维护

    title: 可爱的豆子--使用Beans思想让Python代码更易维护 toc: false comments: true date: 2016-06-19 21:43:33 tags: [Pyth ...

  4. if __name__== "__main__" 的意思(作用)python代码复用

    if __name__== "__main__" 的意思(作用)python代码复用 转自:大步's Blog  http://www.dabu.info/if-__-name__ ...

  5. Python 代码风格

    1 原则 在开始讨论Python社区所采用的具体标准或是由其他人推荐的建议之前,考虑一些总体原则非常重要. 请记住可读性标准的目标是提升可读性.这些规则存在的目的就是为了帮助人读写代码,而不是相反. ...

  6. 一行python代码实现树结构

    树结构是一种抽象数据类型,在计算机科学领域有着非常广泛的应用.一颗树可以简单的表示为根, 左子树, 右子树. 而左子树和右子树又可以有自己的子树.这似乎是一种比较复杂的数据结构,那么真的能像我们在标题 ...

  7. [Dynamic Language] 用Sphinx自动生成python代码注释文档

    用Sphinx自动生成python代码注释文档 pip install -U sphinx 安装好了之后,对Python代码的文档,一般使用sphinx-apidoc来自动生成:查看帮助mac-abe ...

  8. 上传自己的Python代码到PyPI

    一.需要准备的事情 1.当然是自己的Python代码包了: 2.注册PyPI的一个账号. 二.详细介绍 1.代码包的结构: application \application __init__.py m ...

  9. 如何在batch脚本中嵌入python代码

    老板叫我帮他测一个命令在windows下消耗的时间,因为没有装windows那个啥工具包,没有timeit那个命令,于是想自己写一个,原理很简单: REM timeit.bat echo %TIME% ...

随机推荐

  1. Makefile编写 二

    变量 1. Makefile中变量和函数的展开(除规则命令行中的变量和函数以外),是在make读取makefile文件时进行的,包括“define”定义的变量. 2. 变量可以用来代表一个文件名列表. ...

  2. Erlang process structure -- refc binary

    Erlang 的process 是虚拟机层面的进程,每个Erlang process 都包括一个 pcb(process control block), 一个stack 以及私有heap . 这部分的 ...

  3. vue-router和锚点冲突问题

    传统的锚点定位会与vue-router中的路由设置存在冲突,都是使用'#'进行的,所以这里使用一直方法来模拟锚点跳转,并使用tween.js达到动态的过度效果 不使用原生锚点,使用这种方式解决 imp ...

  4. Spring容器初始化数据(数据库)BeanPostProcessor的应用

    1.目的:在Spring启动的时候加载在数据库保存的配置信息,一方面杜绝随意修改,一方面方便管理 2.BeanPostProcessor是Spring提供的一个方法通过implements方式实现 会 ...

  5. Java 将指定字符串连接到此字符串的结尾 concat()

    Java 手册 concat public String concat(String str) 将指定字符串连接到此字符串的结尾. 如果参数字符串的长度为 0,则返回此 String 对象.否则,创建 ...

  6. 怎么才知道你在使用的是不是中国电信CN2的线路

    原文:http://www.juzhenyun.org/helpview_66.html 首先你能从和电信的合同上确认是否为CN2线路 目前CN2的线路多为商业用途.公司用户申请中国电信的Intern ...

  7. UI“三重天”之selenium--封装(二)

    基础示例代码: /** * @author Richered **/ package com.sample; import org.openqa.selenium.By; import org.ope ...

  8. python之解析json

    json的格式是一个无序的键值对的集合,对象以{}包含,键值中间用:隔开,两个键值对之间用,隔开,值可以是双引号引起来的字符串(string),数值(number),true,false,null,对 ...

  9. [译]2D空间中使用四叉树Quadtree进行碰撞检测优化

    操作系统:Windows8.1 显卡:Nivida GTX965M 开发工具:Unity2017.2.0f3 原文出处 : Quick Tip: Use Quadtrees to Detect Lik ...

  10. 8.3.2018 1 Quick and dirty 快而脏的快餐

    Quick and dirty  快而脏的快餐 BEIJING  北京 Food delivery is a booming business. Waste is piling up, too  送餐 ...