【BZOJ2306】幸福路径(动态规划,倍增)
【BZOJ2306】幸福路径(动态规划,倍增)
题面
题解
不要求确切的值,只需要逼近
显然可以通过移动\(\infty\)步来达到逼近的效果
考虑每次的一步怎么移动
设\(f[i][j]\)表示走\(i\)步到了\(j\)能够得到的最大权值
\(f[i][v]=max(f[i-1][u])+W[v]*p^i,(u,v)\in G\)
这样的复杂度是\(O(T(n+m))\),\(T\)是自己设定的步数
但是这样子逼近精度很慢
假设\(p=0.999999\),大概要\(10^7\)步才能达到目标进度
这样子显然太慢
我们考虑如何优化
既然一步步走很慢,那么我们考虑倍增来走
首先预处理以下两个点之间的连通性
设\(g[i][j][k]\)表示走了\(2^k\)步后是否能从\(i\)到\(j\)
那么,\(f[i][j]\)表示走了\(2^i\)步到达\(j\)能够拿到的最大权值
这样子每次随意枚举两个点\(i,j\)来转移,发现有些东西没法记录
比如枚举两个点,但是不能保证这两个点之间的最优路径是拼接在一起的
所以我们加一维\(f[i][j][l]\)表示从\(i\)到\(j\)走了\(2^l\)步拿到的最优权值
枚举一个中间点\(k\)
\(f[i][j][l]=max(f[i][k][l-1]+p^{2^{l-1}}f[k][j][l-1])\)
这样子的复杂度就是\(O(n^3log10^7)\)了
其实\(g\)也可以不用预处理是否联通,直接把不连通的距离设为\(-inf\)就行了
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 111
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
struct Line{int v,next;}e[MAX<<4];
int h[MAX],cnt=1;
inline void Add(int u,int v){e[cnt]=(Line){v,h[u]};h[u]=cnt++;}
int n,m,S;
double f[30][MAX][MAX];
double W[MAX],p,Ans;
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;++i)scanf("%lf",&W[i]);
scanf("%d",&S);scanf("%lf",&p);
memset(f,0xfe,sizeof(f));
for(int i=1;i<=n;++i)f[0][i][i]=0;
for(int i=1;i<=m;++i)
{
int u=read(),v=read();
f[0][u][v]=W[v]*p;
}
for(int l=1;l<30;++l,p*=p)
for(int k=1;k<=n;++k)
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)
f[l][i][j]=max(f[l][i][j],f[l-1][i][k]+p*f[l-1][k][j]);
for(int i=1;i<=n;++i)Ans=max(Ans,f[29][S][i]);
printf("%.1lf\n",Ans+W[S]);
return 0;
}
【BZOJ2306】幸福路径(动态规划,倍增)的更多相关文章
- 【BZOJ 2306】 2306: [Ctsc2011]幸福路径 (倍增floyd)
2306: [Ctsc2011]幸福路径 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 912 Solved: 437 Description 有向 ...
- 「CTSC 2011」幸福路径
[「CTSC 2011」幸福路径 蚂蚁是可以无限走下去的,但是题目对于精度是有限定的,只要满足精度就行了. \({(1-1e-6)}^{2^{25}}=2.6e-15\) 考虑使用倍增的思想. 定义\ ...
- BZOJ2306:[CTSC2011]幸福路径(倍增Floyd)
Description 有向图 G有n个顶点 1, 2, …, n,点i 的权值为 w(i).现在有一只蚂蚁,从给定的起点 v0出发,沿着图 G 的边爬行.开始时,它的体力为 1.每爬过一条边,它 ...
- 【bzoj2306】[Ctsc2011]幸福路径 倍增Floyd
题目描述 一张n个点的有向图,每个点有一个权值.一开始从点$v_0$出发沿图中的边任意移动,移动到路径上的第$i$个点 输入 每一行中两个数之间用一个空格隔开. 输入文件第一行包含两个正整数 n, ...
- BZOJ2306 [Ctsc2011]幸福路径[倍增]
这个有环的情况非常的讨厌,一开始想通过数学推等比数列的和,但是发现比较繁就不做了. 然后挖掘这题性质. 数据比较小,但是体力可以很接近1(恼怒),也就是说可能可以跳很多很多步.算了一下,大概跳了2e7 ...
- bzoj2306 [Ctsc2011]幸福路径 倍增 Floyd
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=2306 题解 倍增 Floyd. 令 \(f[i][j][k]\) 表示走了 \(2^i\) 步 ...
- BZOJ2306: [Ctsc2011]幸福路径
Description 有向图 G有n个顶点 1, 2, -, n,点i 的权值为 w(i).现在有一只蚂蚁,从 给定的起点 v0出发,沿着图 G 的边爬行.开始时,它的体力为 1.每爬过一条 边,它 ...
- 【Ctsc2011】幸福路径
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2306 给定一张有向图,每个点有权值,蚂蚁从某个节点出发,初始体力值为$1$,每走一条边$体 ...
- [CTSC2011]幸福路径
题目描述 有向图 G有n个顶点 1, 2, …, n,点i 的权值为 w(i).现在有一只蚂蚁,从 给定的起点 v0出发,沿着图 G 的边爬行.开始时,它的体力为 1.每爬过一条 边,它的体力都会下降 ...
随机推荐
- directive 指令一
什么是Directive Directive将一段html,js封装在一起,形成一个可以复用的独立个体,具有特定的功能.angularjs中的指令通常是比较小的组件,它相当于是给我们提供了一些公共的自 ...
- 微软office web apps 服务器搭建之在线文档预览(二)
上一篇文章已经介绍了整个安装过程了.只要在浏览器中输入文档转换server的ip,会自动跳转,出现如下页面. 那么就可以实现本地文档预览了,你可以试试.(注意:是本地哦,路径不要写错,类似“\\fil ...
- 我们一起学习WCF 第二篇WCF承载多个接口
前言:现在王大叔养了大批猪,赚了很多钱.但是最近发现养鸡也可以赚很多钱,他就像扩展业务开始养鸡.又过两年他发现市场对狗的需求量很大,他开始养狗.那么他改怎么做呢,不可能去修改猪住的地方把鸭子和狗放里面 ...
- MySQL☞左外链接与右外连接
外链接查询:即要查询有关联关系的数据,还要查询没有关联关系的数据.(个人理解为:表A和表B两个关联的列中)如下图: emmm,简单的来说两个表的关联关系:book.bid=bookshop.id,他们 ...
- Linux系统服务(daemon)(鸟哥Linux私房菜笔记)
Linux系统服务(daemon) 一.SystemV的init管理机制(脚本式启动)1.服务启动分类stand alone 独立启动模式super daemon 总管程序 2.服务的启动.关闭与观察 ...
- html页面中完成查找功能
最近在搞一个被很多人改了的框架,天天看代码看的头的晕了,不过感觉进步还挺大的,自己做了一个后台可配置前台查看两个库不同数据范围的东西,还挺满意,那天拿出来分享一下,今天先说一个这几天做的功能,就是ht ...
- 阿里巴巴将在美国推出电子商务网站11 Main
新浪科技讯 北京时间2月11日晚间消息,阿里巴巴集团周二向路透社证实,阿里巴巴将通过旗下子公司Vendio和Auctiva在美国推出一个电子商务网站. 该网站的名称为“11 Main”(11main. ...
- 数据库与数据仓库的比较Hbase——Hive
数据仓库(Data Warehouse)是一个面向主题的(Subject Oriented).集成的(Integrate).相对稳定的(Non-Volatile).反映历史变化(Time Varian ...
- git实验
四.实例应用 应用1.现有项目移植到git代管 进入目标项目,进行git初始化: 初始化:git init 修改config:git config -- local user.name '名称' 和 ...
- 王者荣耀交流协会final发布中间产物
WBS+PSP 版本控制报告 软件功能说明书final修订