【BZOJ2306】幸福路径(动态规划,倍增)

题面

BZOJ

题解

不要求确切的值,只需要逼近

显然可以通过移动\(\infty\)步来达到逼近的效果

考虑每次的一步怎么移动

设\(f[i][j]\)表示走\(i\)步到了\(j\)能够得到的最大权值

\(f[i][v]=max(f[i-1][u])+W[v]*p^i,(u,v)\in G\)

这样的复杂度是\(O(T(n+m))\),\(T\)是自己设定的步数

但是这样子逼近精度很慢

假设\(p=0.999999\),大概要\(10^7\)步才能达到目标进度

这样子显然太慢

我们考虑如何优化

既然一步步走很慢,那么我们考虑倍增来走

首先预处理以下两个点之间的连通性

设\(g[i][j][k]\)表示走了\(2^k\)步后是否能从\(i\)到\(j\)

那么,\(f[i][j]\)表示走了\(2^i\)步到达\(j\)能够拿到的最大权值

这样子每次随意枚举两个点\(i,j\)来转移,发现有些东西没法记录

比如枚举两个点,但是不能保证这两个点之间的最优路径是拼接在一起的

所以我们加一维\(f[i][j][l]\)表示从\(i\)到\(j\)走了\(2^l\)步拿到的最优权值

枚举一个中间点\(k\)

\(f[i][j][l]=max(f[i][k][l-1]+p^{2^{l-1}}f[k][j][l-1])\)

这样子的复杂度就是\(O(n^3log10^7)\)了

其实\(g\)也可以不用预处理是否联通,直接把不连通的距离设为\(-inf\)就行了

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 111
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
struct Line{int v,next;}e[MAX<<4];
int h[MAX],cnt=1;
inline void Add(int u,int v){e[cnt]=(Line){v,h[u]};h[u]=cnt++;}
int n,m,S;
double f[30][MAX][MAX];
double W[MAX],p,Ans;
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;++i)scanf("%lf",&W[i]);
scanf("%d",&S);scanf("%lf",&p);
memset(f,0xfe,sizeof(f));
for(int i=1;i<=n;++i)f[0][i][i]=0;
for(int i=1;i<=m;++i)
{
int u=read(),v=read();
f[0][u][v]=W[v]*p;
}
for(int l=1;l<30;++l,p*=p)
for(int k=1;k<=n;++k)
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)
f[l][i][j]=max(f[l][i][j],f[l-1][i][k]+p*f[l-1][k][j]);
for(int i=1;i<=n;++i)Ans=max(Ans,f[29][S][i]);
printf("%.1lf\n",Ans+W[S]);
return 0;
}

【BZOJ2306】幸福路径(动态规划,倍增)的更多相关文章

  1. 【BZOJ 2306】 2306: [Ctsc2011]幸福路径 (倍增floyd)

    2306: [Ctsc2011]幸福路径 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 912  Solved: 437 Description 有向 ...

  2. 「CTSC 2011」幸福路径

    [「CTSC 2011」幸福路径 蚂蚁是可以无限走下去的,但是题目对于精度是有限定的,只要满足精度就行了. \({(1-1e-6)}^{2^{25}}=2.6e-15\) 考虑使用倍增的思想. 定义\ ...

  3. BZOJ2306:[CTSC2011]幸福路径(倍增Floyd)

    Description 有向图 G有n个顶点 1,  2, …,  n,点i 的权值为 w(i).现在有一只蚂蚁,从给定的起点 v0出发,沿着图 G 的边爬行.开始时,它的体力为 1.每爬过一条边,它 ...

  4. 【bzoj2306】[Ctsc2011]幸福路径 倍增Floyd

    题目描述 一张n个点的有向图,每个点有一个权值.一开始从点$v_0$出发沿图中的边任意移动,移动到路径上的第$i$个点 输入 每一行中两个数之间用一个空格隔开. 输入文件第一行包含两个正整数 n,  ...

  5. BZOJ2306 [Ctsc2011]幸福路径[倍增]

    这个有环的情况非常的讨厌,一开始想通过数学推等比数列的和,但是发现比较繁就不做了. 然后挖掘这题性质. 数据比较小,但是体力可以很接近1(恼怒),也就是说可能可以跳很多很多步.算了一下,大概跳了2e7 ...

  6. bzoj2306 [Ctsc2011]幸福路径 倍增 Floyd

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=2306 题解 倍增 Floyd. 令 \(f[i][j][k]\) 表示走了 \(2^i\) 步 ...

  7. BZOJ2306: [Ctsc2011]幸福路径

    Description 有向图 G有n个顶点 1, 2, -, n,点i 的权值为 w(i).现在有一只蚂蚁,从 给定的起点 v0出发,沿着图 G 的边爬行.开始时,它的体力为 1.每爬过一条 边,它 ...

  8. 【Ctsc2011】幸福路径

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2306 给定一张有向图,每个点有权值,蚂蚁从某个节点出发,初始体力值为$1$,每走一条边$体 ...

  9. [CTSC2011]幸福路径

    题目描述 有向图 G有n个顶点 1, 2, …, n,点i 的权值为 w(i).现在有一只蚂蚁,从 给定的起点 v0出发,沿着图 G 的边爬行.开始时,它的体力为 1.每爬过一条 边,它的体力都会下降 ...

随机推荐

  1. 关于网易云验证码V1.0版本的服务介绍

    服务介绍 易盾验证码是一个用于区分人和机器的通用验证码组件.传统的字符型验证码由于存在破解率高,用户体验不友好等问题,已不适用于现今的互联网环境.易盾验证码抛弃了传统字符型验证码展示-填写字符-比对答 ...

  2. 学习HTML 第二节.HTML头部

    HTML为什么要有个头部?还不太明白,可能是一些要提前声明的东西吧.先看看有什么内容吧. 可以添加在头部区域的元素标签为: <title>标题,这个我们知道了: <meta>使 ...

  3. Http协议工作特点和工作原理笔记

    工作特点: (1)B/S结构(Browser/Server,浏览器/服务器模式) (2)无状态 (3)简单快速.可使用超文本传输协议.灵活运行传输各种类型 工作原理: 客户端发送请求浏览器 -> ...

  4. POJ-3122(二分算法)

    //题意:这是一个分蛋糕的游戏, t个测试数据,输入n, f n代表的是n块蛋糕,蛋糕的高为1, f代表的是f个人朋友,然后输入每份蛋糕的半径 // 将n块蛋糕分成 f+1 份 每一份都是完成的一块蛋 ...

  5. 002 -- MySQL的逻辑架构

                                            msql的逻辑架构图 第一层:主要功能是连接处理.授权认证.安全等.相当于JavaEE中的常说的Web层 第二层:包含了 ...

  6. 斯坦福大学机器学习(Andrew Ng@2014)--自学笔记

    今天学习Andrew NG老师<机器学习>之6 - 6 - Advanced Optimization,做笔记如下: 用fminunc函数求代价函数最小值,分两步: 1.自定义代价函数 f ...

  7. 在GPT格式的硬盘上,使用EFI启动的方式,安装Win7 64位系统

    Win7 sp1 原装系统,用UltraISO(软碟通) 把U 盘制成Win7 安装的启动U盘 将bootmgfw.efi和shell.efi 加到已制好启动U盘的根目录,并在efi/boot/路径下 ...

  8. hadoop 中balance 机制

    Hadoop的HDFS集群非常容易出现机器与机器之间磁盘利用率不平衡的情况,比如集群中添加新的数据节点.当HDFS出现不平衡状况的时候,将引发很多问题,比如MR程序无法很好地利用本地计算的优势,机器之 ...

  9. 网站UI分析

    本次网站UI分析我选择的是我们石家庄铁道大学的网站,首先对于网站的分析建立在我经常使用鼠须的基础上,我可以很好的站在用户的角度来进行分析,否则对于你不熟悉的网站你可能是不能很好地体验到他的 结构. U ...

  10. C语言的问卷调查

    1.你对自己的未来有什么规划?做了哪些准备? 未来想当一个网络工程师,为了这个目标我正在努力学习网络.网页及相关的知识. 2.你认为什么是学习?学习有什么用?现在学习动力如何?为什么? 学习就是不断尝 ...