UVA-11383 Golden Tiger Claw (KM算法)
题目大意:一张可行二分图的权值以邻接矩阵的形式给了出来,现在要找每一个节点的可行顶标,使顶标和最小。
题目分析:直接用KM算法,结束后顶标之和最小。。。模板题。
代码如下:
# include<iostream>
# include<cstdio>
# include<queue>
# include<cmath>
# include<vector>
# include<cstring>
# include<algorithm>
using namespace std;
# define LL long long
# define REP(i,s,n) for(int i=s;i<n;++i)
# define CL(a,b) memset(a,b,sizeof(a))
# define CLL(a,b,n) fill(a,a+n,b) const int N=505;
const int INF=1<<30;
int w[N][N],lx[N],ly[N],n;
int link[N],visx[N],visy[N],slack[N]; bool match(int x)
{
visx[x]=1;
REP(y,1,n+1){
if(visy[y]) continue;
int t=lx[x]+ly[y]-w[x][y];
if(t==0){
visy[y]=1;
if(link[y]==-1||match(link[y])){
link[y]=x;
return true;
}
}else if(slack[y]>t)
slack[y]=t;
}
return false;
} void update()
{
int d=INF;
REP(i,1,n+1) if(!visy[i])
d=min(d,slack[i]);
REP(i,1,n+1) if(visx[i]) lx[i]-=d;
REP(i,1,n+1){
if(visy[i]) ly[i]+=d;
else slack[i]-=d;
}
} void KM()
{
CL(link,-1);
CL(ly,0);
REP(i,1,n+1){
lx[i]=-1;
REP(j,1,n+1)
lx[i]=max(lx[i],w[i][j]);
}
REP(x,1,n+1){
CLL(slack,INF,n+1);
while(1){
CL(visx,0);
CL(visy,0);
if(match(x)) break;
update();
}
}
} int main()
{
int T=15;
while(T--)
{
scanf("%d",&n);
REP(i,1,n+1) REP(j,1,n+1) scanf("%d",&w[i][j]);
KM();
REP(i,1,n+1) printf("%d%c",lx[i],(i==n)?'\n':' ');
REP(i,1,n+1) printf("%d%c",ly[i],(i==n)?'\n':' ');
int sum=0;
REP(i,1,n+1) sum+=lx[i]+ly[i];
printf("%d\n",sum);
}
return 0;
}
UVA-11383 Golden Tiger Claw (KM算法)的更多相关文章
- UVA 11383 - Golden Tiger Claw(二分图完美匹配扩展)
UVA 11383 - Golden Tiger Claw 题目链接 题意:给定每列和每行的和,给定一个矩阵,要求每一个格子(x, y)的值小于row(i) + col(j),求一种方案,而且全部行列 ...
- UVA 11383 Golden Tiger Claw 金虎爪(KM算法)
题意: 给一个n*n的矩阵,每个格子中有正整数w[i][j],试为每行和每列分别确定一个数字row[i]和col[i],使得任意格子w[i][j]<=row[i]+col[j]恒成立.先输row ...
- 【KM算法】UVA 11383 Golden Tiger Claw
题目大意 给你一个\(n×n\)的矩阵G,每个位置有一个权,求两个一维数组\(row\)和\(col\),使\(row[i] + col[j]\ge G[i][j]\),并且\(∑row+∑col\) ...
- UVA11383 Golden Tiger Claw —— KM算法
题目链接:https://vjudge.net/problem/UVA-11383 题解: 根据KM()算法,标杆满足:l(x) + l(y) >= w(x, y) . 当求完最大权匹配之后,所 ...
- UVA 11383 Golden Tiger Claw 题解
题目 --> 题解 其实就是一个KM的板子 KM算法在进行中, 需要满足两个点的顶标值之和大于等于两点之间的边权, 所以进行一次KM即可. KM之后, 顶标之和就是最小的.因为如果不是最小的,就 ...
- UVA11383 Golden Tiger Claw KM算法
题目链接:传送门 分析 这道题乍看上去没有思路,但是我们仔细一想就会发现这道题其实是一个二分图最大匹配的板子 我们可以把这道题想象成将男生和女生之间两两配对,使他们的好感度最大 我们把矩阵中的元素\( ...
- Uva - 11383 - Golden Tiger Claw
题意:一个N*N的矩阵,第i行第j列的元素大小为w[i][j],每行求一个数row[i],每列求一个数col[j],使得row[i] + col[j] >= w[i][j],且所有的row[]与 ...
- UVA 11383 Golden Tiger Claw(最佳二分图完美匹配)
题意:在一个N*N的方格中,各有一个整数w(i,j),现在要求给每行构造row(i),给每列构造col(j),使得任意w(i,j)<=row(i)+col(j),输出row(i)与col(j)之 ...
- 【UVA 11383】 Golden Tiger Claw (KM算法副产物)
Omi, Raymondo, Clay and Kimiko are on new adventure- in search of new Shen Gong Wu. But EvilBoy Geni ...
- uva11383 Golden Tiger Claw 深入理解km算法
/** 题目: uva11383 Golden Tiger Claw 深入理解km算法 链接:https://vjudge.net/problem/UVA-11383 题意:lv 思路:lrj训练指南 ...
随机推荐
- With all Java versions it is strongly recommended to not use experimental -XX JVM options.
https://lucene.apache.org/solr/7_6_0//SYSTEM_REQUIREMENTS.html System Requirements Apache Solr runs ...
- javascript 知道这20个正则表达式,能让你少写1,000行代码
正则表达式,一个十分古老而又强大的文本处理工具,仅仅用一段非常简短的表达式语句,便能够快速实现一个非常复杂的业务逻辑.熟练地掌握正则表达式的话,能够使你的开发效率得到极大的提升. 正则表达式经常被用于 ...
- ConcurrentHashMap实现解析
ConcurrentHashMap是线程安全的HashMap的实现,具有更加高效的并发性.与HashTable不同,ConcurrentHashMap运用锁分离技术,尽量减小写操作时加锁的粒度,即在写 ...
- (2.1)DDL增强功能-数据类型、同义词、分区表
1.数据类型 (1)常用数据类型 1.整数类型 int 存储范围是-2,147,483,648到2,147,483,647之间的整数,主键列常设置此类型. (每个数值占用 4字节) smallint ...
- saltstack master minion 配置文件
Master端的配置是修改/etc/salt下master配置文件.以下是Master端常用的配置. interface: 指定bind 的地址(默认为0.0.0.0) publish_port: 指 ...
- js-template-art【一】简述
一.官方地址 地址:https://github.com/aui/art-template 二.概述 官方对比 三.特性 拥有接近 JavaScript 渲染极限的的性能 调试友好:语法.运行时错误日 ...
- 7.如何将python脚本打包为exe形式
先安装pyinstaller,pip install pyinstaller 然后 pyinstaller -F combine.py打包即可
- (转)Terraform,自动化配置与编排必备利器
本文来自作者 QingCloud实践课堂 在 GitChat 上分享 「Terraform,自动化配置与编排必备利器」 Terraform - Infrastructure as Code 什么是 T ...
- com.sun.image.codec.jpeg在Eclipse中报错的解决办法
在Eclipse中处理图片,需要引入两个包:import com.sun.image.codec.jpeg.JPEGCodec;import com.sun.image.codec.jpeg.JPEG ...
- bat笔记
背景介绍 现入职的公司包含发送EDM的项目,每天都有各种题型邮件需要发送,但是由于各种原因,发送EDM程序的服务器老是被网管各种重启 :) 作为负责人,对这事很恼火,隔几天就被投诉,怎么又没收到考勤邮 ...