After having drifted about in a small boat for a couple of days, Akira Crusoe Maeda was finally cast ashore on a foggy island. Though he was exhausted and despaired, he was still fortunate to remember a legend of the foggy island, which he had heard from patriarchs in his childhood. This must be the island in the legend. In the legend, two tribes have inhabited the island, one is divine and the other is devilish, once members of the divine tribe bless you, your future is bright and promising, and your soul will eventually go to Heaven, in contrast, once members of the devilish tribe curse you, your future is bleak and hopeless, and your soul will eventually fall down to Hell.

In order to prevent the worst-case scenario, Akira should distinguish the devilish from the divine. But how? They looked exactly alike and he could not distinguish one from the other solely by their appearances. He still had his last hope, however. The members of the divine tribe are truth-tellers, that is, they always tell the truth and those of the devilish tribe are liars, that is, they always tell a lie.

He asked some of them whether or not some are divine. They knew one another very much and always responded to him "faithfully" according to their individual natures (i.e., they always tell the truth or always a lie). He did not dare to ask any other forms of questions, since the legend says that a devilish member would curse a person forever when he did not like the question. He had another piece of useful informationf the legend tells the populations of both tribes. These numbers in the legend are trustworthy since everyone living on this island is immortal and none have ever been born at least these millennia.

You are a good computer programmer and so requested to help Akira by writing a program that classifies the inhabitants according to their answers to his inquiries.

Input

The input consists of multiple data sets, each in the following format :

n p1 p2 
xl yl a1 
x2 y2 a2 
... 
xi yi ai 
... 
xn yn an

The first line has three non-negative integers n, p1, and p2. n is the number of questions Akira asked. pl and p2 are the populations of the divine and devilish tribes, respectively, in the legend. Each of the following n lines has two integers xi, yi and one word ai. xi and yi are the identification numbers of inhabitants, each of which is between 1 and p1 + p2, inclusive. ai is either yes, if the inhabitant xi said that the inhabitant yi was a member of the divine tribe, or no, otherwise. Note that xi and yi can be the same number since "are you a member of the divine tribe?" is a valid question. Note also that two lines may have the same x's and y's since Akira was very upset and might have asked the same question to the same one more than once.

You may assume that n is less than 1000 and that p1 and p2 are less than 300. A line with three zeros, i.e., 0 0 0, represents the end of the input. You can assume that each data set is consistent and no contradictory answers are included.

Output

For each data set, if it includes sufficient information to classify all the inhabitants, print the identification numbers of all the divine ones in ascending order, one in a line. In addition, following the output numbers, print end in a line. Otherwise, i.e., if a given data set does not include sufficient information to identify all the divine members, print no in a line.

Sample Input

2 1 1
1 2 no
2 1 no
3 2 1
1 1 yes
2 2 yes
3 3 yes
2 2 1
1 2 yes
2 3 no
5 4 3
1 2 yes
1 3 no
4 5 yes
5 6 yes
6 7 no
0 0 0

Sample Output

no
no
1
2
end
3
4
5
6
end 用并查集来处理数据,然后就变成了背包 带权并查集,权重为0或1
0代表和父节点同类,1代表和父节点不同类,
这里的同类关系并不能判断出是诚实的人还是说谎的人,需要在后面dp判断。 首先,将yes视作同类关系,no视作异类关系。
然后如果x,y同根的话在判断一下是否矛盾,不过貌似数据里没有。
处理出来一共有多少个集合,并且把集合的根存储起来,还要处理出根的同类,根的异类的数目。
接着就是dp了。
因为每一个集合都必须要用到,所以dp[i][0]不能初始化为1。
所以使用第一个集合来初始化dp的起点,另外初始化的时候要注意是 += ,
因为有可能第一个集合的同类与异类的数目一样,当然这样的话是没法唯一的表示出t和l的(也有可能表示不出来)
dp完成之后判断一下dp[k-1][t](dp[k-1][l]也是一样的)是否等于1,等于的话就能唯一的表示,不能的话no(不论是等于0还是大于一)
接着就是输出路径了。
#include<cstdio>
#include<cstring> int dp[][];
struct s{
int father, relation;
int same, other;
int True;
}p[]; int find_(int x){
if(x == p[x].father)
return x;
int px = p[x].father;
p[x].father = find_(px);
p[x].relation = (p[x].relation + p[px].relation)%;
return p[x].father;
} int main(){
int m, t, l;
int x, y;
char str[];
while(scanf("%d%d%d",&m,&t,&l),m|t|l){
int n = t+l, d, fx, fy, ok = , k = ;
int f[];
for(int i=;i<=n;i++){
p[i] = s{i,,,,};
// 自己和自己的关系是同类 0
// 自己和自己是同类,所以same = 1
}
for(int i=;i<m;i++){
scanf("%d%d%s",&x,&y,str);
if(ok)continue;
if(str[] == 'y') // 同类
d = ;
else d = ;
fx = find_(x);
fy = find_(y); if(fx == fy && (p[x].relation + p[y].relation)% != d)
ok = ;
else {
p[fx].father = fy;
p[fx].relation = (p[x].relation+p[y].relation+d)%;
}
}
if(!ok){
for(int i=;i<=n;i++){
x = find_(i);
if(x == i)
f[k++] = i;
else {
p[x].other += p[i].relation;
p[x].same += - p[i].relation;
}
} memset(dp,,sizeof(dp)); dp[][ p[f[]].same ] += ;
dp[][ p[f[]].other ] += ;
for(int i=;i<k;i++){
x = f[i];
for(int j=;j<=n;j++){
if(dp[i-][j]){
dp[i][ p[x].same + j ] += dp[i-][j];
dp[i][ p[x].other + j ] += dp[i-][j];
}
}
}
}
if(dp[k-][t] != || ok)
printf("no\n");
else {
for(int i=k-;i>;i--){
x = f[i];
y = p[x].same;
if(i != && dp[i-][t-y] != || (i == && t == y)){
p[x].True = ;
t -= y;
}else t -= p[x].other;
}
for(int i=;i<=n;i++){
x = p[i].father;
if(p[x].True && !p[i].relation || p[x].True == && p[i].relation)
printf("%d\n",i);
}
printf("end\n");
}
}
return ;
}
												

POJ 1417 并查集 dp的更多相关文章

  1. poj 1417(并查集+简单dp)

    True Liars Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 2087   Accepted: 640 Descrip ...

  2. POJ - 1417 并查集+背包

    思路:很简单的种类并查集,利用并查集可以将所有的人分成几个集合,每个集合又分为好人和坏人集合,直接进行背包dp判断有多少种方法可以在取了所有集合并且人数正好凑足p1个好人的方案.dp(i, j)表示前 ...

  3. poj1417(种类并查集+dp)

    题目:http://poj.org/problem?id=1417 题意:输入三个数m, p, q 分别表示接下来的输入行数,天使数目,恶魔数目: 接下来m行输入形如x, y, ch,ch为yes表示 ...

  4. poj 1984 并查集

    题目意思是一个图中,只有上下左右四个方向的边.给出这样的一些边, 求任意指定的2个节点之间的距离. 就是看不懂,怎么破 /* POJ 1984 并查集 */ #include <stdio.h& ...

  5. POJ 1417 - True Liars - [带权并查集+DP]

    题目链接:http://poj.org/problem?id=1417 Time Limit: 1000MS Memory Limit: 10000K Description After having ...

  6. POJ 1417 True Liars(种类并查集+dp背包问题)

    题目大意: 一共有p1+p2个人,分成两组,一组p1,一组p2.给出N个条件,格式如下: x y yes表示x和y分到同一组,即同是好人或者同是坏人. x y no表示x和y分到不同组,一个为好人,一 ...

  7. POJ1417 True Liars —— 并查集 + DP

    题目链接:http://poj.org/problem?id=1417 True Liars Time Limit: 1000MS   Memory Limit: 10000K Total Submi ...

  8. poj 1797(并查集)

    http://poj.org/problem?id=1797 题意:就是从第一个城市运货到第n个城市,最多可以一次运多少货. 输入的意思分别为从哪个城市到哪个城市,以及这条路最多可以运多少货物. 思路 ...

  9. POJ 2492 并查集扩展(判断同性恋问题)

    G - A Bug's Life Time Limit:10000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u S ...

随机推荐

  1. windows安装Oracle数据库

    我装的版本是Oracle11,64位,直接网上下载即可.安装过程中也出现了一些坑,现在整理了一下. 1.下载的目录和安装的目录最好放到英文目录下,别放到中文或者特殊字符的文件夹中,点击setup.ex ...

  2. Redis学习笔记(二)

    解读Retwis官网例子 Redis需要考虑需要哪些keys以及对应的value使用合适的数据类型进行存储.在retwis例子中,我们需要users,user的粉丝列表, user的关注用户列表等等. ...

  3. 使用for in 循环数据集

    在DELPHI没有FOR IN的语法时,我们要使用如下代码枚举数据集中的每个内容: cds.First; while not cds.eof do begin ... cds.Next; end; 最 ...

  4. CentOS6安装各种大数据软件 第三章:Linux基础软件的安装

    相关文章链接 CentOS6安装各种大数据软件 第一章:各个软件版本介绍 CentOS6安装各种大数据软件 第二章:Linux各个软件启动命令 CentOS6安装各种大数据软件 第三章:Linux基础 ...

  5. Linux下安装spf13-vim

    前言 spf13-vim是一个集成多个非常好用的vim插件的集合,对于在众多插件中不知道该怎么做选择,并且为各个插件的安装而头疼的我们提供了一个很好的工具,让我仅仅需要安装和配置一次就能拥有众多优秀的 ...

  6. IOT大数据大世界大未来,物联网产业大数据应用简析

    在物联网时代,面对PB级的数据,企业将难以以一己之力完成基础设施的建设.物联网所产生的大量数据不仅会驱动现在的数据中心发生根本性的变化,同时也会驱动相关企业采用新的大数据策略. 物联网的价值在于数据: ...

  7. 截图:【炼数成金】深度学习框架Tensorflow学习与应用

    创建图.启动图 Shift+Tab Tab 变量介绍: F etch Feed 简单的模型构造 :线性回归 MNIST数据集 Softmax函数 非线性回归神经网络   MINIST数据集分类器简单版 ...

  8. Leecode刷题之旅-C语言/python-231 2的幂

    /* * @lc app=leetcode.cn id=231 lang=c * * [231] 2的幂 * * https://leetcode-cn.com/problems/power-of-t ...

  9. Linux IO多路复用 poll

    Linux IO多路复用 poll 之前曾经提到过 select poll 跟select类似,poll改进了select的一个确定,就是poll没有监听上限 不过poll还是需要遍历以及频繁的把数组 ...

  10. LIFO栈 ADT接口 实现十进制转其他进制

    LIFO 接口 Stack.h //LIFO 链栈初始化 void InitStack(Stack top){ //LIFO 链栈判断栈空 boolean StackKEmpty(Stack top) ...