BZOJ 2152 聪聪可可(树形DP)
给出一颗n个点带边权的树(n<=20000),求随机选择两个点,使得它们之间的路径边权是3的倍数的概率是多少。
首先总的对数是n*n,那么只需要统计路径边权是3的倍数的点对数量就行了。
考虑将无根树化为有根树,令dp[x][i]表示以x点为路径起点,x的某个子孙为路径终点的边权值模3为i的点对数量。
那么显然有dp[x][i]+=dp[son[x]][(i-w)%3].
考虑点对之间的路径,要么是它们的LCA是点对中的一个点,要么不在点对中,因此统计一下以每个点x为LCA时的路径边权值%3为i的点对数量。
而这两个统计都可以在一次树形DP中完成。因此总复杂度为O(n).
# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <bitset>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
const int N=;
//Code begin... struct Edge{int p, next, w;}edge[N<<];
int head[N], cnt=, dp[N][], son[N]; void add_edge(int u, int v, int w){edge[cnt].p=v; edge[cnt].w=w; edge[cnt].next=head[u]; head[u]=cnt++;}
void dfs(int x, int fa){
for (int i=head[x]; i; i=edge[i].next) {
int v=edge[i].p;
if (v==fa) continue;
dfs(v,x);
FO(j,,) dp[x][j]+=dp[v][((j-edge[i].w)%+)%];
}
for (int i=head[x]; i; i=edge[i].next) {
int v=edge[i].p;
if (v==fa) continue;
int y0=((-edge[i].w)%+)%, y1=((-edge[i].w)%+)%, y2=((-edge[i].w)%+)%;
son[x]+=dp[v][y0]*(dp[x][]-dp[v][y0])+dp[v][y1]*(dp[x][]-dp[v][y2])+dp[v][y2]*(dp[x][]-dp[v][y1]);
}
dp[x][]+=;
}
int main ()
{
int n, ans=, sum=, u, v, w;
scanf("%d",&n);
FO(i,,n) scanf("%d%d%d",&u,&v,&w), add_edge(u,v,w%), add_edge(v,u,w%);
dfs(,);
FOR(i,,n) ans+=dp[i][];
ans=ans*-n; sum=n*n;
FOR(i,,n) ans+=son[i];
int gcd=__gcd(ans,sum);
ans/=gcd; sum/=gcd;
printf("%d/%d\n",ans,sum);
return ;
}
BZOJ 2152 聪聪可可(树形DP)的更多相关文章
- [BZOJ 4033] [HAOI2015] T1 【树形DP】
题目链接:BZOJ - 4033 题目分析 使用树形DP,用 f[i][j] 表示在以 i 为根的子树,有 j 个黑点的最大权值. 这个权值指的是,这个子树内部的点对间距离的贡献,以及 i 和 Fat ...
- [BZOJ 4455] [ZJOI 2016] 小星星 (树形dp+容斥原理+状态压缩)
[BZOJ 4455] [ZJOI 2016] 小星星 (树形dp+容斥原理+状态压缩) 题面 给出一棵树和一个图,点数均为n,问有多少种方法把树的节点标号,使得对于树上的任意两个节点u,v,若树上u ...
- 【BZOJ】1415 [Noi2005]聪聪和可可 期望DP+记忆化搜索
[题意]给定无向图,聪聪和可可各自位于一点,可可每单位时间随机向周围走一步或停留,聪聪每单位时间追两步(先走),问追到可可的期望时间.n<=1000. [算法]期望DP+记忆化搜索 [题解]首先 ...
- BZOJ 1415 聪聪和可可(期望DP)
我们可以用n次BFS预处理出 to[][]数组,to[i][j]表示聪聪从i点到j点第一步会走哪个点. 那么对于聪聪在i点,可可在j点,聪聪先走,定义dp[i][j]表示步数期望. 那么显然有dp[i ...
- BZOJ 1415 [NOI2005]聪聪与可可 (概率DP+dfs)
题目大意:给你一个无向联通图,节点数n<=1000.聪聪有一个机器人从C点出发向在M点的可可移动,去追赶并吃掉可可,在单位时间内,机器人会先朝离可可最近的节点移动1步,如果移动一步机器人并不能吃 ...
- luogu2634 聪聪可可 (树形dp)
要求出两点间距离==0(mod3) 的数量,然后除以(n*n) 设f[i][j]为i的子树到i的距离==j(mod3)的数量,然后做树形dp即可 因为要最简,所以要求一下gcd,然后除下去 #incl ...
- 【国家集训队】聪聪可可 ——树形DP
感觉是一道很妙的树形DP题,充分利用到了树的性质(虽然说点分治也可以做,,,,但是本蒟蒻不会啊) 然而某Twilight_Sx大佬表示这道题真的非常水,,,本蒟蒻也只能瑟瑟发抖了 本蒟蒻表示还是要经过 ...
- 洛谷 P2634 聪聪可可 —— 树形DP / 点分治
题目:https://www.luogu.org/problemnew/show/P2634 今天刚学了点分治,做例题: 好不容易A了,结果发现自己写的是树形DP...(也不用找重心)(比点分治快) ...
- bzoj2152 聪聪可可 (树形dp)
大意: 给定树, 随机选两点, 求两点距离是3的倍数的概率. 树形dp入门水题, 枚举每个点作为lca时的答案即可. #include <iostream> #include <qu ...
随机推荐
- 20155308 实验四 Android开发基础
20155308 实验四 Android开发基础 实验内容 基于Android Studio开发简单的Android应用并部署测试; 了解Android.组件.布局管理器的使用: 掌握Android中 ...
- 20145226夏艺华 网络对抗技术EXP4 恶意代码分析
20145226夏艺华 网络对抗技术EXP4 恶意代码分析(未完成版) 回答问题 (1)如果在工作中怀疑一台主机上有恶意代码,但只是猜想,所有想监控下系统一天天的到底在干些什么.请设计下你想监控的操作 ...
- 238. Product of Array Except Self(对O(n)和递归又有了新的理解)
238. Product of Array Except Self Total Accepted: 41565 Total Submissions: 97898 Difficulty: Med ...
- 洛谷1552 [APIO2012]派遣
洛谷1552 [APIO2012]派遣 原题链接 题解 luogu上被刷到了省选/NOI- ...不至于吧 这题似乎有很多办法乱搞? 对于一个点,如果他当管理者,那选的肯定是他子树中薪水最少的k个,而 ...
- git远程版本回滚方法【转】
step1:本地代码回滚到上一版本(或者指定版本) git reset --hard HEAD~1 step2:加入-f参数,强制提交,远程端将强制跟新到reset版本 git push -f ori ...
- Maven学习(三)-----Maven本地资源库
Maven本地资源库 Maven的本地资源库是用来存储所有项目的依赖关系(插件jar和其他文件,这些文件被Maven下载)到本地文件夹.很简单,当你建立一个Maven项目,所有相关文件将被存储在你的M ...
- hibernate.hbm.xml文件配置入门小结(1)
在Hibernate中,各表的映射文件xxx.hbm.xml可以通过工具生成,例如在使用MyEclipse开发时,它提供了自动生成映射文件的工具. hibernate.hbm.xml文件的基本结构如下 ...
- java不用任何已有方法完全自写的去重法
package aa; class InsertSort{ private long[] a; private int nElems; //构造方法 public InsertSort(int max ...
- Python:集合操作总结
集合是一组无序排列的不重复元素集 [注]:集合的最大作用是对一个序列进行去重操作 一.集合的分类 在Python中集合分为两类,为可变集合(set)和不可变集合(frozenset).对于可变集合(s ...
- Codeforces Round #287 (Div. 2) E. Breaking Good 最短路
题目链接: http://codeforces.com/problemset/problem/507/E E. Breaking Good time limit per test2 secondsme ...