hdu1245

Saving James Bond

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 1877    Accepted Submission(s): 356

Problem Description
This time let us consider the situation in the movie "Live and Let Die" in which James Bond, the world's most famous spy, was captured by a group of drug dealers. He was sent to a small piece of land at the center of a lake filled with crocodiles. There he
performed the most daring action to escape -- he jumped onto the head of the nearest crocodile! Before the animal realized what was happening, James jumped again onto the next big head... Finally he reached the bank before the last crocodile could bite him
(actually the stunt man was caught by the big mouth and barely escaped with his extra thick boot).

Assume that the lake is a 100×100 square one. Assume that the center of the lake is at (0,0) and the northeast corner at (50,50). The central island is a disk centered at (0,0) with the diameter of 15. A number of crocodiles are in the lake at various positions.
Given the coordinates of each crocodile and the distance that James could jump, you must tell him whether he could escape.If he could,tell him the shortest length he has to jump and the min-steps he has to jump for shortest length.
 
Input
The input consists of several test cases. Each case starts with a line containing n <= 100, the number of crocodiles, and d > 0, the distance that James could jump. Then one line follows for each crocodile, containing the (x, y) location of the crocodile. Note
that x and y are both integers, and no two crocodiles are staying at the same position. 
 
Output
For each test case, if James can escape, output in one line the shortest length he has to jump and the min-steps he has to jump for shortest length. If it is impossible for James to escape that way, simply ouput "can't be saved".
 
Sample Input
4 10
17 0
27 0
37 0
45 0
1 10
20 30
 
Sample Output
42.50 5
can't be saved

题意:

二级最短路算法:

方法一

#include"stdio.h"
#include"string.h"
#include"iostream"
#include"map"
#include"string"
#include"queue"
#include"stdlib.h"
#include"math.h"
#define M 40
#define eps 1e-10
#define inf 99999999
#define mod 1000000000
using namespace std;
struct st
{
int u,v,next;
double w;
}edge[30000];
int head[111],use[111],n,t,time[111];
double dis[111];
struct node
{
double x,y;
}p[111];
double pow(double x)
{
return x*x;
}
double Len(node a,node b)
{
return sqrt(pow(a.x-b.x)+pow(a.y-b.y));
}
void init()
{
t=0;
memset(head,-1,sizeof(head));
}
void add(int u,int v,double w)
{
edge[t].u=u;
edge[t].v=v;
edge[t].w=w;
edge[t].next=head[u];
head[u]=t++;
}
void bfs(int S)
{
int i;
queue<int>q;
memset(use,0,sizeof(use));
for(i=0;i<=n;i++)
{
time[i]=dis[i]=inf;
}
dis[S]=time[S]=0;
q.push(S);
while(!q.empty())
{
int u=q.front();
q.pop();
use[u]=1;
for(i=head[u];i!=-1;i=edge[i].next)
{
int v=edge[i].v;
if(dis[v]>dis[u]+edge[i].w)
{
dis[v]=dis[u]+edge[i].w;
time[v]=time[u]+1;
}
if(fabs(dis[v]-dis[u]-edge[i].w)<eps)
{
if(time[v]>time[u]+1)
time[v]=time[u]+1;
}
if(!use[v])
q.push(v);
}
}
}
int judge(double x,double y)
{
if(x>=-50&&x<=50&&y>=-50&&y<=50&&x*x+y*y>=7.5*7.5)
return 1;
return 0;
}
int main()
{
int m,i,j;
double d;
while(scanf("%d%lf",&m,&d)!=-1)
{
p[0].x=p[0].y=0;
for(i=1;i<=m;i++)
scanf("%lf%lf",&p[i].x,&p[i].y);
init();
for(i=1;i<=m;i++)
{
for(j=i+1;j<=m;j++)
{
if(judge(p[i].x,p[i].y)&&judge(p[j].x,p[j].y))
{
double L=Len(p[i],p[j]);
if(L<=d)
{
add(i,j,L);
add(j,i,L);
}
}
}
}
n=m+1;
for(i=1;i<=m;i++)
{
if(judge(p[i].x,p[i].y))
{
double L=Len(p[0],p[i]);
if(L-7.5<=d)
{
add(0,i,L-7.5);
add(i,0,L-7.5);
}
double L1=min(50-p[i].x,50+p[i].x);
double L2=min(50-p[i].y,50+p[i].y);
L=min(L1,L2);
if(L<=d)
{
add(i,n,L);
add(n,i,L);
}
}
}
if(d>=50-7.5)
{
add(0,n,50-7.5);
add(n,0,50-7.5);
}
bfs(0);
if(dis[n]<inf)
printf("%.2lf %d\n",dis[n],time[n]);
else
printf("can't be saved\n");
}
return 0;
}

方法二:dij

#include"stdio.h"
#include"string.h"
#include"math.h"
#define M 111
#define inf 99999999
#define eps 1e-8
#include"iostream"
using namespace std;
struct node
{
double x,y;
}p[M];
int use[M],time[M][M],mint[M],n;
double dis[M],G[M][M];
double pow(double x)
{
return x*x;
}
double Len(node a,node b)
{
return sqrt(pow(a.x-b.x)+pow(a.y-b.y));
}
void dij(int s)
{
int i;
memset(use,0,sizeof(use));
for(i=0;i<=n;i++)
{
dis[i]=G[s][i];
mint[i]=time[s][i];
}
mint[s]=0;
dis[s]=0;
use[s]=1;
int w=n;
while(w--)
{
double min=inf;
int tep=-1;
for(i=0;i<=n;i++)
{
if(!use[i]&&dis[i]<min)
{
min=dis[i];
tep=i;
}
}
if(tep==-1)
return;
use[tep]=1;
for(i=0;i<=n;i++)
{
if(!use[i]&&dis[i]>dis[tep]+G[tep][i])
{
dis[i]=dis[tep]+G[tep][i];
mint[i]=mint[tep]+time[tep][i];
}
else if(!use[i]&&fabs(dis[i]-dis[tep]-G[tep][i])<eps)
{
if(mint[i]>mint[tep]+time[tep][i])
mint[i]=mint[tep]+time[tep][i];
}
}
}
}
int ok(double x,double y)
{
if(x>=-50&&y>=-50&&x<=50&&y<=50&&x*x+y*y>=7.5*7.5)
return 1;
return 0;
}
int main()
{
int m,i,j;
double d;
while(scanf("%d%lf",&m,&d)!=-1)
{
n=m+1;
for(i=0;i<=n;i++)
{
for(j=0;j<=n;j++)
time[i][j]=G[i][j]=inf;
G[i][i]=time[i][i]=0;
}
p[0].x=p[0].y=0;
for(i=1;i<=m;i++)
{
scanf("%lf%lf",&p[i].x,&p[i].y);
}
for(i=1;i<=m;i++)
{
for(j=1;j<=m;j++)
{
if(ok(p[i].x,p[i].y)&&ok(p[j].x,p[j].y))
{
double L=Len(p[i],p[j]);
if(d>=L)
{
G[i][j]=G[j][i]=L;
time[i][j]=time[j][i]=1;
} }
}
}
for(i=1;i<=m;i++)
{
if(ok(p[i].x,p[i].y))
{
double L1=min(50-p[i].x,50+p[i].x);
double L2=min(50-p[i].y,50+p[i].y);
double L=min(L1,L2);
if(d>=L)
{
G[i][n]=G[n][i]=L;
time[i][n]=time[n][i]=1;
} L=Len(p[i],p[0])-7.5;
if(d>=L)
{
G[0][i]=G[i][0]=L;
time[0][i]=time[i][0]=1;
} }
}
if(d>=42.5)
{
G[0][n]=G[n][0]=42.5;
time[0][n]=time[n][0]=1;
} dij(0);
if(dis[n]<inf)
printf("%.2lf %d\n",dis[n],mint[n]);
else
printf("can't be saved\n");
}
return 0;
}

Dij二级最短路的更多相关文章

  1. PAT 1087【二级最短路】

    二级最短路+二级最短路,就是DP过程吧. 代码稍微注释一些,毕竟贴代码不好.. #include<bits/stdc++.h> using namespace std; typedef l ...

  2. 51nod1459【二级最短路】

    标签说的是BFS... 太菜,不知道怎么BFS...是不是spfa写,就叫BFS...感觉不是.... 只是二级最短路的写法,直接搞就很容易了,简单题: #include <bits/stdc+ ...

  3. 链式前向星实现的堆优化dij求最短路模板

    #include<cstdio> #include<string> #include<cstdlib> #include<cmath> #include ...

  4. UVA 10801 Dij最短路(改模板)

    题意:有n个电梯,目的地是第K层(起点是第0层),给出每个电梯的速度,以及每个电梯能到达的层数,如果中途需要换电梯的话,时间需要+60,求到达目的地的最短时间: 思路:Dij求最短路.如果是另一条路比 ...

  5. Codeforces 545E. Paths and Trees 最短路

    E. Paths and Trees time limit per test: 3 seconds memory limit per test: 256 megabytes input: standa ...

  6. vijos 1423 最短路or环(有向图)

    最佳路线 描述 年久失修的赛道令国际汽联十分不满.汽联命令主办方立即对赛道进行调整,否则将取消其主办权.主办方当然必须马上开始行动. 赛道测评人员经过了三天三夜的数据采集,选出了若干可以使用的道路和各 ...

  7. 【BZOJ2622】[2012国家集训队测试]深入虎穴 次短路

    [BZOJ2622][2012国家集训队测试]深入虎穴 Description 虎是中国传统文化中一个独特的意象.我们既会把老虎的形象用到喜庆的节日装饰画上,也可能把它视作一种邪恶的可怕的动物,例如“ ...

  8. Luogu3953 NOIP2017逛公园(最短路+拓扑排序+动态规划)

    跑一遍dij根据最短路DAG进行拓扑排序,按拓扑序dp即可.wa了三发感觉非常凉. #include<iostream> #include<cstdio> #include&l ...

  9. DIJ的优化,和spfa的优化

    SPFA和DIJ求最短路的算法的坑点一直是很多的.经常会让人搞不懂. 易错案例: 用重载运算符来排序,如: struct cmp { bool operator ()(int x, int y) co ...

随机推荐

  1. QT 交叉编译工具选择

    使用QT交叉编译,生成的都是x86的可执行文件.Zoro告诉我交叉工具配置错了. 参考链接: http://www.cnblogs.com/zengjfgit/p/4744507.html linux ...

  2. 关于document.createDocumentFragment()(转)

    documentFragment 是一个无父对象的document对象. 他支持以下DOM2方法: appendChild, cloneNode, hasAttributes, hasChildNod ...

  3. linux上nginx上配置虚拟主机的相关配置

    1.配置主配置: nginx/conf/nginx.conf 2.虚拟主机配置:nginx/conf/extra/learn.weixin.com.conf 配置完后,重启服务器!

  4. 上传文件到 Sharepoint 的文档库中和下载 Sharepoint 的文档库的文件到客户端

    文件操作应用场景: 如果你的.NET项目是运行在SharePoint服务器上的,你可以直接使用SharePoint服务器端对象模型,用SPFileCollection.Add方法 http://msd ...

  5. centos7,yum安装工具报错

    1.问题描述:yum安装gcc和其他的工具时一直报错: 2.问题解决: 网上看到有类似文章: No more mirrors to try. 得知这可能是错误的缓存源导致,直接两个命令解决: yum ...

  6. 一、NHibernate配置所支持的属性

    属性名 用途 dialect 设置NHibernate的Dialect类名 - 允许NHibernate针对特定的关系数据库生成优化的SQL 可用值: full.classname.of.Dialec ...

  7. mysql 中实现行变列

    前言: mysql行列变化,最难的就是将多个列变成多行,使用的比较多的是统计学中行变列,列变行,没有找到现成的函数或者语句,所以自己写了存储过程,使用动态sql来实现,应用业务场景,用户每个月都有使用 ...

  8. Python 流程控制:for

    for 循环用于对一个序列进行遍历,用法如下: In [4]: for i in 'abcd': ...: print(i) ...: a b c d In [13]: for i in range( ...

  9. UE4修改自Rama的UDP通信蓝图插件

    UE4.15没有提供蓝图UDP的组件,可以在网上找到一个ID叫Rama写的源代码,我把它封装成插件了(MyUdpPlugin),方便在各个UE4版本工程中使用UDP通信. 使用方式: 1.在自己的工程 ...

  10. Oracle函数的使用

    日期转换to_date insert into test (birthday,name) values (to_date('2016-03-12','yyyy-mm-dd'),'zy'); to_ch ...