mongoDB支持二维空间索引,使用空间索引,mongoDB支持一种特殊查询,如某地图网站上可以查找离你最近的咖啡厅,银行等信息。这个使用mongoDB的空间索引结合特殊的查询方法很容易实现。
前提条件:
建立空间索引的key可以使用array或内嵌文档存储,但是前两个elements必须存储固定的一对空间位置数值。如

{ loc : [ 50 , 30 ] }
{ loc : { x : 50 , y : 30 } }
{ loc : { foo : 50 , y : 30 } }
{ loc : { lat : 40.739037, long: 73.992964 } }

# 使用范例1:
> db.mapinfo.drop()                                         
true
> db.mapinfo.insert({"category" : "coffee","name" : "digoal coffee bar","loc" : [70,80]})
> db.mapinfo.insert({"category" : "tea","name" : "digoal tea bar","loc" : [70,80]})      
> db.mapinfo.insert({"category" : "tea","name" : "hangzhou tea bar","loc" : [71,81]})
> db.mapinfo.insert({"category" : "coffee","name" : "hangzhou coffee bar","loc" : [71,81]})
# 未创建2d索引时,不可以使用$near进行查询
> db.mapinfo.find({loc : {$near : [50,50]}})
error: {
        "$err" : "can't find special index: 2d for: { loc: { $near: [ 50.0, 50.0 ] } }",
        "code" : 13038
}
# 在loc上面创建2d索引
> db.mapinfo.ensureIndex({"loc" : "2d"},{"background" : true})
> db.mapinfo.getIndexes()                                     
[
        {
                "name" : "_id_",
                "ns" : "test.mapinfo",
                "key" : {
                        "_id" : 1
                }
        },
        {
                "_id" : ObjectId("4d242e1f3238ba30f9ca05ad"),
                "ns" : "test.mapinfo",
                "key" : {
                        "loc" : "2d"
                },
                "name" : "loc_",
                "background" : true
        }
]
# 查询测试,返回结果按照从最近到最远的顺序排序输出.
> db.mapinfo.find({loc : {$near : [72,82]},"category" : "coffee"}).explain()
{
        "cursor" : "GeoSearchCursor",
        "nscanned" : 2,
        "nscannedObjects" : 2,
        "n" : 2,
        "millis" : 0,
        "indexBounds" : {

}
}
> db.mapinfo.find({loc : {$near : [72,82]},"category" : "coffee"})          
{ "_id" : ObjectId("4d242dce3238ba30f9ca05ac"), "category" : "coffee", "name" : "hangzhou coffee bar", "loc" : [ 71, 81 ] }
{ "_id" : ObjectId("4d242d8b3238ba30f9ca05a9"), "category" : "coffee", "name" : "digoal coffee bar", "loc" : [ 70, 80 ] }
# 换一个经纬度后结果相反.
> db.mapinfo.find({loc : {$near : [69,69]},"category" : "coffee"})
{ "_id" : ObjectId("4d242d8b3238ba30f9ca05a9"), "category" : "coffee", "name" : "digoal coffee bar", "loc" : [ 70, 80 ] }
{ "_id" : ObjectId("4d242dce3238ba30f9ca05ac"), "category" : "coffee", "name" : "hangzhou coffee bar", "loc" : [ 71, 81 ] }
# 2d默认取值范围[-179,-179]到[180,180] 包含这两个点,超出范围将报错
> db.mapinfo.insert({"category" : "bank","name" : "china people bank","loc" : [181,181]})  
point not in range
> db.mapinfo.insert({"category" : "bank","name" : "china people bank","loc" : [-179,-180]})
in > 0
# 如果已经存在超过范围的值,建2D索引将报错
> db.mapinfo.insert({"category" : "bank","name" : "china people bank","loc" : [-180,-180]})
> db.mapinfo.ensureIndex({"loc" : "2d"})                                                   
in > 0
# 在建2d索引的时候可以指定取值范围
# 如,以上包含了[-180,-180]这个点之后,建2d索引将报错,使用以下解决.或者把这条记录先处理掉.
# 在限制条件下,min不包含,max包含,从下面建索引的语句中可以看出.
> db.mapinfo.ensureIndex({"loc" : "2d"},{min:-181,max:180})
> 成功
# 注意官方文档上说you can only have 1 geo2d index per collection right now,不过测试可以建多个,如下
> db.mapinfo.drop()                                        
true
> db.mapinfo.insert({"category" : "bank","name" : "china people bank","loc" : [71,81],"HQ_loc" : [91,101]})
> db.mapinfo.ensureIndex({"loc" : "2d"},{"background" : "true"})                                           
> db.mapinfo.ensureIndex({"HQ_loc" : "2d"},{"background" : "true"})
> db.mapinfo.getIndexes()
[
        {
                "name" : "_id_",
                "ns" : "test.mapinfo",
                "key" : {
                        "_id" : 1
                }
        },
        {
                "_id" : ObjectId("4d2439803238ba30f9ca05cd"),
                "ns" : "test.mapinfo",
                "key" : {
                        "loc" : "2d"
                },
                "name" : "loc_",
                "background" : "true"
        },
        {
                "_id" : ObjectId("4d2439863238ba30f9ca05ce"),
                "ns" : "test.mapinfo",
                "key" : {
                        "HQ_loc" : "2d"
                },
                "name" : "HQ_loc_",
                "background" : "true"
        }
]
> db.mapinfo.find({"loc" : {"$near" : [20,21]}})                                                           
{ "_id" : ObjectId("4d2439643238ba30f9ca05cc"), "category" : "bank", "name" : "china people bank", "loc" : [ 71, 81 ], "HQ_loc" : [ 91, 101 ] }
> db.mapinfo.find({"HQ_loc" : {"$near" : [20,21]}})
{ "_id" : ObjectId("4d2439643238ba30f9ca05cc"), "category" : "bank", "name" : "china people bank", "loc" : [ 71, 81 ], "HQ_loc" : [ 91, 101 ] }

# 使用范例2:
# 测试数据
> db.mapinfo.find()
{ "_id" : ObjectId("4d2439643238ba30f9ca05cc"), "category" : "bank", "name" : "china people bank", "loc" : [ 71, 81 ], "HQ_loc" : [ 91, 101 ] }
{ "_id" : ObjectId("4d243a743238ba30f9ca05cf"), "category" : "coffee", "name" : "digoal coffee bar", "loc" : [ 100, 81 ], "HQ_loc" : [ 100, 101 ] }
{ "_id" : ObjectId("4d243a8b3238ba30f9ca05d0"), "category" : "tea", "name" : "digoal tea bar", "loc" : [ 110, 81 ], "HQ_loc" : [ 110, 101 ] }
{ "_id" : ObjectId("4d243ab23238ba30f9ca05d1"), "category" : "shop", "name" : "digoal supermarket", "loc" : [ 120, 81 ], "HQ_loc" : [ 120, 101 ] }
{ "_id" : ObjectId("4d243aba3238ba30f9ca05d2"), "category" : "shop", "name" : "digoal supermarket1", "loc" : [ 121, 81 ], "HQ_loc" : [ 120, 101 ] }
{ "_id" : ObjectId("4d243abe3238ba30f9ca05d3"), "category" : "shop", "name" : "digoal supermarket2", "loc" : [ 122, 81 ], "HQ_loc" : [ 120, 101 ] }
{ "_id" : ObjectId("4d243ac33238ba30f9ca05d4"), "category" : "shop", "name" : "digoal supermarket3", "loc" : [ 123, 81 ], "HQ_loc" : [ 120, 101 ] }
{ "_id" : ObjectId("4d243ac83238ba30f9ca05d5"), "category" : "shop", "name" : "digoal supermarket4", "loc" : [ 124, 81 ], "HQ_loc" : [ 120, 101 ] }
{ "_id" : ObjectId("4d243ace3238ba30f9ca05d6"), "category" : "shop", "name" : "digoal supermarket5", "loc" : [ 125, 81 ], "HQ_loc" : [ 120, 101 ] }
{ "_id" : ObjectId("4d243ad63238ba30f9ca05d7"), "category" : "shop", "name" : "digoal supermarket6", "loc" : [ 126, 81 ], "HQ_loc" : [ 120, 101 ] }
{ "_id" : ObjectId("4d243aee3238ba30f9ca05d8"), "category" : "shop", "name" : "digoal supermarket7", "loc" : [ 26, 81 ], "HQ_loc" : [ 120, 101 ] }
{ "_id" : ObjectId("4d243af43238ba30f9ca05d9"), "category" : "shop", "name" : "digoal supermarket8", "loc" : [ 27, 81 ], "HQ_loc" : [ 120, 101 ] }
{ "_id" : ObjectId("4d243af93238ba30f9ca05da"), "category" : "shop", "name" : "digoal supermarket9", "loc" : [ 29, 81 ], "HQ_loc" : [ 120, 101 ] }
{ "_id" : ObjectId("4d243aff3238ba30f9ca05db"), "category" : "shop", "name" : "digoal supermarket10", "loc" : [ 30, 81 ], "HQ_loc" : [ 120, 101 ] }
{ "_id" : ObjectId("4d243b063238ba30f9ca05dc"), "category" : "shop", "name" : "digoal supermarket11", "loc" : [ 31, 81 ], "HQ_loc" : [ 120, 101 ] }
# 索引
> db.mapinfo.getIndexes()
[
        {
                "name" : "_id_",
                "ns" : "test.mapinfo",
                "key" : {
                        "_id" : 1
                }
        },
        {
                "_id" : ObjectId("4d2439803238ba30f9ca05cd"),
                "ns" : "test.mapinfo",
                "key" : {
                        "loc" : "2d"
                },
                "name" : "loc_",
                "background" : "true"
        },
        {
                "_id" : ObjectId("4d2439863238ba30f9ca05ce"),
                "ns" : "test.mapinfo",
                "key" : {
                        "HQ_loc" : "2d"
                },
                "name" : "HQ_loc_",
                "background" : "true"
        }
]
# 查询离[50,50]最近的5家商店
> db.mapinfo.find({"loc" : {"$near" : [50,50]},"category" : "shop"}).limit(5)
{ "_id" : ObjectId("4d243b063238ba30f9ca05dc"), "category" : "shop", "name" : "digoal supermarket11", "loc" : [ 31, 81 ], "HQ_loc" : [ 120, 101 ] }
{ "_id" : ObjectId("4d243aff3238ba30f9ca05db"), "category" : "shop", "name" : "digoal supermarket10", "loc" : [ 30, 81 ], "HQ_loc" : [ 120, 101 ] }
{ "_id" : ObjectId("4d243af93238ba30f9ca05da"), "category" : "shop", "name" : "digoal supermarket9", "loc" : [ 29, 81 ], "HQ_loc" : [ 120, 101 ] }
{ "_id" : ObjectId("4d243af43238ba30f9ca05d9"), "category" : "shop", "name" : "digoal supermarket8", "loc" : [ 27, 81 ], "HQ_loc" : [ 120, 101 ] }
{ "_id" : ObjectId("4d243aee3238ba30f9ca05d8"), "category" : "shop", "name" : "digoal supermarket7", "loc" : [ 26, 81 ], "HQ_loc" : [ 120, 101 ] }
# 找出限制离[50,50]在37 的商店,使用maxDistance
> db.mapinfo.find({"loc" : {"$near" : [50,50], "$maxDistance" : 37},"category" : "shop"})
{ "_id" : ObjectId("4d243b063238ba30f9ca05dc"), "category" : "shop", "name" : "digoal supermarket11", "loc" : [ 31, 81 ], "HQ_loc" : [ 120, 101 ] }
{ "_id" : ObjectId("4d243aff3238ba30f9ca05db"), "category" : "shop", "name" : "digoal supermarket10", "loc" : [ 30, 81 ], "HQ_loc" : [ 120, 101 ] }
# 复合索引
> db.mapinfo.ensureIndex({"loc" : "2d","category" : 1})                                                        
> db.mapinfo.getIndexes()
[
        {
                "name" : "_id_",
                "ns" : "test.mapinfo",
                "key" : {
                        "_id" : 1
                }
        },
        {
                "_id" : ObjectId("4d2439803238ba30f9ca05cd"),
                "ns" : "test.mapinfo",
                "key" : {
                        "loc" : "2d"
                },
                "name" : "loc_",
                "background" : "true"
        },
        {
                "_id" : ObjectId("4d2439863238ba30f9ca05ce"),
                "ns" : "test.mapinfo",
                "key" : {
                        "HQ_loc" : "2d"
                },
                "name" : "HQ_loc_",
                "background" : "true"
        },
        {
                "_id" : ObjectId("4d243ce13238ba30f9ca05dd"),
                "ns" : "test.mapinfo",
                "key" : {
                        "loc" : "2d",
                        "category" : 1
                },
                "name" : "loc__category_1"
        }
]

3. 范例 3
# 除了使用find来搜索以外,还可以使用runCommand
> db.runCommand({"geoNear" : "mapinfo","near" : [50,50],"num" : 10})
{ "errmsg" : "more than 1 geo indexes :(", "ok" : 0 }
# 这里报错,原因是mapinfo超过一个2d索引,但是使用find来查询不会报错,
# 只保留一个“2d"索引后,使用runCommand正常
> db.mapinfo.dropIndex({"loc" : "2d","category" : 1})
{ "nIndexesWas" : 4, "ok" : 1 }
> db.runCommand({"geoNear" : "mapinfo","near" : [50,50],"num" : 10})                     
{ "errmsg" : "more than 1 geo indexes :(", "ok" : 0 }
> db.mapinfo.dropIndex({"HQ_loc" : "2d"})                           
{ "nIndexesWas" : 3, "ok" : 1 }
# "num" 限制返回的记录数
# 使用runCommand和geoNear的好处是可以返回距离.本例"dis" : 36.3593194466869,
> db.runCommand({"geoNear" : "mapinfo","near" : [50,50],"num" : 1}) 
{
        "ns" : "test.mapinfo",
        "near" : "1100110000001111110000001111110000001111110000001111",
        "results" : [
                {
                        "dis" : 36.3593194466869,
                        "obj" : {
                                "_id" : ObjectId("4d243b063238ba30f9ca05dc"),
                                "category" : "shop",
                                "name" : "digoal supermarket11",
                                "loc" : [
                                        31,
                                        81
                                ],
                                "HQ_loc" : [
                                        120,
                                        101
                                ]
                        }
                }
        ],
        "stats" : {
                "time" : 0,
                "btreelocs" : 6,
                "nscanned" : 7,
                "objectsLoaded" : 3,
                "avgDistance" : 36.3593194466869,
                "maxDistance" : 36.3593194466869
        },
        "ok" : 1
}
# 使用runCommand同样也可以使用普通的FIND的限制条件,如下放在query : { "category" : "coffee" }
> db.runCommand({"geoNear" : "mapinfo","near" : [50,50],"num" : 1,query : { "category" : "coffee" }})
{
        "ns" : "test.mapinfo",
        "near" : "1100110000001111110000001111110000001111110000001111",
        "results" : [
                {
                        "dis" : 58.830266786369556,
                        "obj" : {
                                "_id" : ObjectId("4d243a743238ba30f9ca05cf"),
                                "category" : "coffee",
                                "name" : "digoal coffee bar",
                                "loc" : [
                                        100,
                                        81
                                ],
                                "HQ_loc" : [
                                        100,
                                        101
                                ]
                        }
                }
        ],
        "stats" : {
                "time" : 0,
                "btreelocs" : 15,
                "nscanned" : 15,
                "objectsLoaded" : 7,
                "avgDistance" : 58.830266786369556,
                "maxDistance" : 58.830266786369556
        },
        "ok" : 1
}

4. 范例4
# 空间索引还支持范围搜索,目前支持圆和矩阵的范围
# 使用box
> box = [[19,19],[90,90]]                                
[ [ 19, 19 ], [ 90, 90 ] ]
> db.mapinfo.find({"loc" : {"$within" : {"$box" : box}}})
{ "_id" : ObjectId("4d2439643238ba30f9ca05cc"), "category" : "bank", "name" : "china people bank", "loc" : [ 71, 81 ], "HQ_loc" : [ 91, 101 ] }
{ "_id" : ObjectId("4d243b063238ba30f9ca05dc"), "category" : "shop", "name" : "digoal supermarket11", "loc" : [ 31, 81 ], "HQ_loc" : [ 120, 101 ] }
{ "_id" : ObjectId("4d243aff3238ba30f9ca05db"), "category" : "shop", "name" : "digoal supermarket10", "loc" : [ 30, 81 ], "HQ_loc" : [ 120, 101 ] }
{ "_id" : ObjectId("4d243af93238ba30f9ca05da"), "category" : "shop", "name" : "digoal supermarket9", "loc" : [ 29, 81 ], "HQ_loc" : [ 120, 101 ] }
{ "_id" : ObjectId("4d243af43238ba30f9ca05d9"), "category" : "shop", "name" : "digoal supermarket8", "loc" : [ 27, 81 ], "HQ_loc" : [ 120, 101 ] }
{ "_id" : ObjectId("4d243aee3238ba30f9ca05d8"), "category" : "shop", "name" : "digoal supermarket7", "loc" : [ 26, 81 ], "HQ_loc" : [ 120, 101 ] }
# 使用center point and radius
> center = [29,81]
[ 29, 81 ]
> radius = 10
10
> db.mapinfo.find({"loc" : {"$within" : {"$center" : [center,radius]}}})
{ "_id" : ObjectId("4d243af93238ba30f9ca05da"), "category" : "shop", "name" : "digoal supermarket9", "loc" : [ 29, 81 ], "HQ_loc" : [ 120, 101 ] }
{ "_id" : ObjectId("4d243af43238ba30f9ca05d9"), "category" : "shop", "name" : "digoal supermarket8", "loc" : [ 27, 81 ], "HQ_loc" : [ 120, 101 ] }
{ "_id" : ObjectId("4d243aff3238ba30f9ca05db"), "category" : "shop", "name" : "digoal supermarket10", "loc" : [ 30, 81 ], "HQ_loc" : [ 120, 101 ] }
{ "_id" : ObjectId("4d243b063238ba30f9ca05dc"), "category" : "shop", "name" : "digoal supermarket11", "loc" : [ 31, 81 ], "HQ_loc" : [ 120, 101 ] }
{ "_id" : ObjectId("4d243aee3238ba30f9ca05d8"), "category" : "shop", "name" : "digoal supermarket7", "loc" : [ 26, 81 ], "HQ_loc" : [ 120, 101 ] }

注意事项:
1. mongoDB处理的是平面距离,但是实际生活中如果涉及到大范围的距离搜索,可能会有偏差,因为地球是球型的。The current implementation assumes an idealized model of a flat earth, meaning that an arcdegree of latitude (y) and longitude (x) represent the same distance everywhere. This is only true at the equator where they are both about equal to 69 miles or 111km. However, at the 10gen offices at { x : -74 , y : 40.74 } one arcdegree of longitude is about 52 miles or 83 km (latitude is unchanged). This means that something 1 mile to the north would seem closer than something 1 mile to the east.
2. 2d索引目前还不支持sharding,In the meantime sharded clusters can use geospatial indexes for unsharded collections within the cluster.
3. New Spherical Model,1.7.0以后将引入新的空间模型.

其他:
The current implementation encodes geographic hash codes atop standard MongoDB b-trees. Results of $near queries are exact. The problem with geohashing is that prefix lookups don't give you exact results, especially around bit flip areas. MongoDB solves this by doing a grid by grid search after the initial prefix scan. This guarantees performance remains very high while providing correct results

mongodb的地理位置索引的更多相关文章

  1. Mongodb添加地理位置索引

    1.同步站点信息到mongo中(支持mysql.sqlserver数据同步) 2.在Collections文件夹下所在文档右键,在菜单中选择Add Index, 3.然后进行数据查询{ "m ...

  2. 地理位置索引 2d索引

    地址位置索引:将一些点的位置存储在mongodb中,创建索引后,可以按照位置来查找其他点 子分类: .2d索引:平面地理位置索引,用于存储和查找平面上的点. .2dsphere索引:球面地理位置索引, ...

  3. 图解 MongoDB 地理位置索引的实现原理

    地理位置索引支持是MongoDB的一大亮点,这也是全球最流行的LBS服务foursquare 选择MongoDB的原因之一.我们知道,通常的数据库索引结构是B+ Tree,如何将地理位置转化为可建立B ...

  4. 图解 MongoDB 地理位置索引的实现原理(转)

    原文链接:图解 MongoDB 地理位置索引的实现原理 地理位置索引支持是MongoDB的一大亮点,这也是全球最流行的LBS服务foursquare 选择MongoDB的原因之一.我们知道,通常的数据 ...

  5. MongoDB数据模型和索引学习总结

    MongoDB数据模型和索引学习总结 1. MongoDB数据模型: MongoDB数据存储结构: MongoDB针对文档(大文件採用GridFS协议)採用BSON(binary json,採用二进制 ...

  6. MongoDB学习笔记~索引提高查询效率

    回到目录 索引这个东西大家不会陌生,只要接触到稍微大一点的数据,都会用到这东西,它可以提升查询的速度,相当代价就是占用了更多的存储空间,这也是正常的,符合“能量守恒定理”,哈哈!今天说的是MongoD ...

  7. MongoDB学习笔记(索引)

    一.索引基础:    MongoDB的索引几乎与传统的关系型数据库一模一样,这其中也包括一些基本的优化技巧.下面是创建索引的命令:    > db.test.ensureIndex({" ...

  8. MongoDB的学习--索引

    索引可以用来优化查询,而且在某些特定类型的查询中,索引是必不可少的.为集合选择合适的索引是提高性能的关键. 先来mock数据 for (i = 0; i < 1000000; i++) { db ...

  9. MongoDB学习笔记(索引)(转)

    一.索引基础:    MongoDB的索引几乎与传统的关系型数据库一模一样,这其中也包括一些基本的优化技巧.下面是创建索引的命令:    > db.test.ensureIndex({" ...

随机推荐

  1. MySql从服务器延迟解决方案

    在从服务器上执行show slave status;可以查看到很多同步的参数,我们需要特别注意的参数如下:Master_Log_File:                      SLAVE中的I/ ...

  2. [状压dp]经典TSP

    0出发 每个顶点经过一次 回到0 最小花费. O($n^2 \times 2^n$) 记忆化搜索: // s: 已经访问过的节点状态 v: 出发位置 int dfs(int s, int v) { ) ...

  3. unity博文搜集

    一.综合篇 1. 脚本 unity3d脚本编程基础 2.Mecanim 使用Mecanim实现连击 3. 数学图形学 U3D需要用到的数学基础  2 4. shader 猫都能学会的Unity3D S ...

  4. Altium designer入门篇-过孔不开窗

    有没有觉得在设计PCB的时候,放的过孔开窗了,在焊接实际PCB板子的时候,会有各种锡尖,拖锡尾巴,严重的网络间短路.此经验简述了使用Altium designer软件,让过孔不开窗的设置办法.初学者可 ...

  5. jquery parent()和parents()区别

    parent(exp) 取得一个包含着所有匹配元素的唯一父元素的元素集合. 你可以使用可选的表达式来筛选. 查找段落的父元素中每个类名为selected的父元素. HTML 代码: <div&g ...

  6. usaco4.12Fence Rails(迭代加深)

    为了这题还去学了下迭代加深 回来还是不会写 只好参考各大神的代码及题解了 二分枚举最大可以切的块数 然后就是各种分析及优化 USACO题解里写了7个优化.. 问题分析 抽象一下就可以发现,算法的本质是 ...

  7. Response.Write用法总结

    问题一: Response.Write 后连接Response.Redirect ,则Response.Write无法显示,直接跳转入Response.Redirect 的页面. 解决方案: Resp ...

  8. NagiosQL 跨站脚本漏洞

    漏洞名称: NagiosQL 跨站脚本漏洞 CNNVD编号: CNNVD-201312-158 发布时间: 2013-12-11 更新时间: 2013-12-11 危害等级:    漏洞类型: 跨站脚 ...

  9. weblogic配置数据源出错

    Connection test failed. Listener refused the connection with the following error: ORA-12505, TNS:lis ...

  10. Log4Net 配置和使用

    转:http://www.cnblogs.com/chencidi/archive/2010/01/12/1645291.html web.config配置如下: <?xml version=& ...