An Easy Problem for Elfness

Time Limit: 5000/2500 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 1148    Accepted Submission(s): 234

Problem Description
Pfctgeorge
is totally a tall rich and handsome guy. He plans to build a huge water
transmission network that covers the whole southwest China. To save the
fund, there will be exactly one path between two cities.

Since
the water every city provides and costs every day is different, he needs
to transfer water from one particular city to another as much as
possible in the next few days. However the pipes which connect the
cities have a limited capacity for transmission. (Which means the water
that transfer though the pipe should not exceed a particular amount) So
he has to know the maximum water that the network can transfer in the
next few days.

He thought it's a maximum flow problem, so he
invites an expert in this field, Elfness (Also known as Xinhang senior
sister) to help him figure it out.

Unlike Pfctgeorge, Elfness
quickly finds that this problem is much easier than a normal maximum
flow problem, and is willing to help Pfctgeorge.

"Oh well, this problem is not a tough one. We can ..."

Abruptly, Pfctgeorge's iPhone rings, and ... the ringtone is Mo Di Da Biao Ke.

"You can make that? Excellent! "Pfctgeorge hangs up his iPhone, and turns to Elfness.

"Here's
good news for you. A construction team told me that every pipe's
capacity can be extended for one day. And the price for extending one
unit capacity varies from day to day. "

"Eh well, that's a good
news for you, not me. Now it's rather like a minimum cost ow problem,
right? But it's still not a tough one, let me have a think. "

After a few seconds' thought, Elfness comes up with a simple solution.

"Ok, we can solve it like... "

Abruptly, here comes Mo Di Da Biao Ke again.

"Seriously? You can build new pipes? Thank you very much. "

"OK,
my dear Elfness, we got more good news. Another construction team said
they can build one or more pipes between any two cities and their pipes
are exactly like the original ones except that they only work for one
day. And the capacity of the new pipes is only one, but they can be
extended, too. Of course, their price to build a single pipe also varies
in days. "

"You mean the new pipes can be extended too? Wow, things are getting more interesting. Give me a few minutes. "

Elfness takes out his new ultrabook which is awarded in VK cup and does some basic calculation.

"I get it. The problem can be solved ..."

Mo Di Da Biao Ke again, but this time it's from Elfness's phone.

"As you see, I have to go out. But I know someone else who can also solve this; I'll recommend this guy for you. "

And
of course, that poor guy is YOU. Help Pfctgeorge solve his problem, and
then the favorability about you from Elfness will raise a lot.

 
Input
The first line has a number T (T <= 10) , indicating the number of test cases.

The
first line of each test case is two integers N (1 <= N <= 100000)
and M (1 <= M <= 100000), indicating the number of the city that
the original network connects and the number of days when Pfctgeorge
needs to know about the maximum water transmissions. Then next N - 1
lines each describe a pipe that connects two cities. The format will be
like U, V , cap (1 <= U, V <= N and 0 <= cap < 10000), which
means the ids of the two cities the pipe connects and the transmission
limit of the pipe. As is said in description, the network that the
cities and pipes form is a tree (an undirected acyclic graph).

Then next M lines of the test case describe the information about the next few days. The format is like S, T, K, A, B(0 <= K <= 2^31 - 1, 1 <= A, B <= 2^31 - 1).
S means the source of the water while T means the sink. K means the
total budget in the day. A means the cost for a construction team to
build a new pipe and B means the cost for a construction team to extend
the capacity of a pipe.

I am glad to list the information of building a new pipe and extending the capacity.

1.
Pfctgeorge can build a new pipe between any two cities, no matter they
have been directly connected or not. Pfctgeorge can build more than one
new pipe between any two cities.
2. The capacity of the pipe that was newly built is one.
3. Pfctgeorge can extend the capacity of any existed pipe including the newly built one and the original one.
4. Each time you extend the capacity of one pipe, the capacity of that pipe increases one.
5. The cost of building a new pipe is A and the cost of extending a pipe is B.
6. You can take any constructions in any times and the only limit is to make sure the total costs not exceed the budget.
7. All the work that construction team does only lasts one single day.

 
Output
For every case, you should output "Case #t:" at first, without quotes. The t is the case number starting from 1.
Then for each day, output the maximum water Pfctgeorge can transfer from S and T with a budget of K.
 
Sample Input
2
5 1
1 2 2
1 3 5
2 4 1
4 5 2
1 5 3 3 2
5 5
1 2 10
2 3 2
3 4 7
2 5 7
1 5 0 1 3
1 3 0 2 3
1 5 3 2 3
1 2 7 3 1
1 3 2 3 1
 
Sample Output
Case #1:
2
Case #2:
7
2
8
17
4
Hint

In the first sample case, you can extend the capacity of the pipe which connects city2 and city4 by one, or just build a new pipe between city2 and city4.

  感觉这道题就是一个笑话。

  本地对拍会爆,但HDU上AC了……

  考虑按深度建主席树,儿子承接父亲的信息,这样就可以在线段树上查询一条链的信息了。

  三种决策:不停地新加边;先加一条边,再不停扩容;不停扩容。

 #include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int maxn=;
#pragma comment(linker,"/STACK:1024000000,1024000000")
int cntE,fir[maxn],to[maxn*],nxt[maxn*],cap[maxn*];
int rt[maxn],ch[maxn*][],sum[maxn*],cal[maxn*],cnt;
int dep[maxn];
int max(int a,int b){return a>b?a:b;}
void addedge(int a,int b,int c){
nxt[++cntE]=fir[a];
fir[a]=cntE;
cap[cntE]=c;
to[cntE]=b;
} void Insert(int pre,int &rt,int l,int r,int g){
rt=++cnt;
ch[rt][]=ch[pre][];
ch[rt][]=ch[pre][];
sum[rt]=sum[pre]+;
cal[rt]=cal[pre]+r-g+;
if(l==r)return;
int mid=(l+r)>>;
if(mid>=g)Insert(ch[pre][],ch[rt][],l,mid,g);
else Insert(ch[pre][],ch[rt][],mid+,r,g);
} int ID[maxn],tot;
int mm[maxn*],Min[maxn*][]; void DFS(int x,int fa){
Min[ID[x]=++tot][]=x;
for(int i=fir[x];i;i=nxt[i])
if(to[i]!=fa){
dep[to[i]]=dep[x]+;
Insert(rt[x],rt[to[i]],,,cap[i]);
DFS(to[i],x);Min[++tot][]=x;
}
} void Prepare(){
for(int i=;i<=tot;i++){
if((i&(i-))==)mm[i]=mm[i-]+;
else mm[i]=mm[i-];
}
for(int k=;k<=mm[tot];k++)
for(int i=;i+(<<k)-<=tot;i++){
if(dep[Min[i][k-]]<dep[Min[i+(<<k-)][k-]])
Min[i][k]=Min[i][k-];
else
Min[i][k]=Min[i+(<<k-)][k-];
}
} int Lca(int x,int y){
if(ID[x]>ID[y])swap(x,y);
int k=mm[ID[y]-ID[x]+];
if(dep[Min[ID[x]][k]]<dep[Min[ID[y]-(<<k)+][k]])
return Min[ID[x]][k];
return Min[ID[y]-(<<k)+][k];
} #define num() sum[ch[r1][0]]+sum[ch[r2][0]]-2*sum[ch[lca][0]]
#define key() cal[ch[r1][0]]+cal[ch[r2][0]]-2*cal[ch[lca][0]] int Query1(int lca,int r1,int r2,int l,int r){
if(l==r)return l;
int mid=(l+r)>>;
if(num()>)
return Query1(ch[lca][],ch[r1][],ch[r2][],l,mid);
return Query1(ch[lca][],ch[r1][],ch[r2][],mid+,r);
} int Query2(int lca,int r1,int r2,int l,int r,int k,int t){
if(l==r)return l;
int mid=(l+r)>>,tmp;
tmp=key()+t*(mid-l+);
if(tmp>k)return Query2(ch[lca][],ch[r1][],ch[r2][],l,mid,k,t);
return Query2(ch[lca][],ch[r1][],ch[r2][],mid+,r,k-tmp,t+num());
} int T,n,Q,cas;
int s,t,k,a,b,ans;
void Init(){
printf("Case #%d:\n",++cas);
memset(sum,,sizeof(sum));
memset(cal,,sizeof(cal));
memset(fir,,sizeof(fir));
memset(Min,,sizeof(Min));
mm[]=-;cntE=cnt=tot=;
} int main(){
scanf("%d",&T);
while(T--){
Init();
scanf("%d%d",&n,&Q);
for(int i=,c;i<n;i++){
scanf("%d%d%d",&a,&b,&c);
addedge(a,b,c);
addedge(b,a,c);
} DFS(,);
Prepare(); while(Q--){
scanf("%d%d",&s,&t);
scanf("%d%d%d",&k,&a,&b);
int lca=Lca(s,t),tmp;
tmp=Query1(rt[lca],rt[s],rt[t],,);
if(a<=b)
ans=tmp+k/a;
else{
ans=tmp;
if(k>=a)ans+=+(k-a)/b;
ans=max(ans,Query2(rt[lca],rt[s],rt[t],,,k/b,));
}
printf("%d\n",ans);
}
}
return ;
}

数据结构(主席树):HDU 4729 An Easy Problem for Elfness的更多相关文章

  1. HDU 4729 An Easy Problem for Elfness (主席树,树上第K大)

    转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents    by---cxlove 题意:给出一个带边权的图.对于每一个询问(S , ...

  2. HDU 4729 An Easy Problem for Elfness(主席树)(2013 ACM/ICPC Asia Regional Chengdu Online)

    Problem Description Pfctgeorge is totally a tall rich and handsome guy. He plans to build a huge wat ...

  3. HDU 4729 An Easy Problem for Elfness 主席树

    题意: 给出一棵树,每条边有一个容量. 有若干次询问:\(S \, T \, K \, A \, B\),求路径\(S \to T\)的最大流量. 有两种方法可以增大流量: 花费\(A\)可以新修一条 ...

  4. HDU 4729 An Easy Problem for Elfness(树链剖分边权+二分)

    题意 链接:https://cn.vjudge.net/problem/HDU-4729 给你n个点,然你求两个点s和t之间的最大流.而且你有一定的钱k,可以进行两种操作 1.在任意连个点之间建立一个 ...

  5. 【HDOJ】4729 An Easy Problem for Elfness

    其实是求树上的路径间的数据第K大的题目.果断主席树 + LCA.初始流量是这条路径上的最小值.若a<=b,显然直接为s->t建立pipe可以使流量最优:否则,对[0, 10**4]二分得到 ...

  6. [HDU4729]An Easy Problem for Elfness

    [HDU4729]An Easy Problem for Elfness 题目大意: 给你一棵\(n(n\le10^5)\)个点的树,树上每条边都有容量. \(m(m\le10^5)\)次询问,每次询 ...

  7. hdu 5475 An easy problem(暴力 || 线段树区间单点更新)

    http://acm.hdu.edu.cn/showproblem.php?pid=5475 An easy problem Time Limit: 8000/5000 MS (Java/Others ...

  8. HDU 5475 An easy problem 线段树

    An easy problem Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pi ...

  9. 数据结构(主席树):COGS 2211. 谈笑风生

    2211. 谈笑风生 ★★★★   输入文件:laugh.in   输出文件:laugh.out   简单对比时间限制:3 s   内存限制:512 MB [问题描述] 设T 为一棵有根树,我们做如下 ...

随机推荐

  1. CUDA与VS2013安装

    @import url(http://i.cnblogs.com/Load.ashx?type=style&file=SyntaxHighlighter.css);@import url(/c ...

  2. C#语法糖之开篇

    本人虽然大学不是学的计算机但是对于IT行业的热爱,依然决然进军IT行业了,自从踏进这个行业到现在也已经3年多了,从去年开发通过网上 了解博客园后深深的爱上这儿了,这里有很多牛人,通过拜读他们的代码,让 ...

  3. [原创] SQLite数据库使用清单(上)

    1. 介绍 1.1 安装 访问 SQLite 下载页面,从 Windows 区下载预编译的二进制文件. 您需要下载 sqlite-shell-win32-*.zip 和 sqlite-dll-win3 ...

  4. onContextItemSelected 用法

    http://blog.csdn.net/kavensu/article/details/8045041 onCreateOptionsMenu :此方法为创建菜单方法,这个菜单就是你在点击手机men ...

  5. LinkedIn第三方登录

    官方开发文档网址:https://developer.linkedin.com angularjs LinkedIn初始化 var apiKey='77n7z65hd7azmb';$(function ...

  6. Linux运行C#程序

    首先需要安装mono 安装教程http://www.cnblogs.com/aixunsoft/p/3422099.html 然后 用终端执行C#程序就可以了,mono 程序文件名 可以直接执行win ...

  7. java_设计模式_模板方法模式_Template Method Pattern(2016-08-11)

    定义: 定义一个操作中算法的骨架,而将一些步骤延迟到子类中,使得子类可以不改变算法的结构即可重定义该算法中的某些特定步骤.这里的算法的结构,可以理解为你根据需求设计出来的业务流程.特定的步骤就是指那些 ...

  8. in_array 判断问题的疑惑解决。

    面试题中有一条是关于in_array判断的,题目如下: 如何大家没有深入了解in_array的类型判断过程,而是根据经验来选择,肯定很多人也是是选择了D答案的,具体的原因我也是从牛人的博客里面得到答案 ...

  9. .animate动画

    .animate(params, [duration], [easing], [callback]) params: 结果样式属性 duration: 动画时长 也可以用 slow normal fa ...

  10. 学C++不得不看的一篇文章[转]

    1. 扎实的基础.数据结构.离散数学.编译原理,这些是所有计算机科学的基础,如果不掌握他们,很难写出高水平的程序.据我的观察,学计算机专业的人比学其他专业的人更能写出高质量的软件.程序人人都会写,但当 ...