POJ 1228 Grandpa's Estate(凸包)
Grandpa's Estate
Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 11289 Accepted: 3117 Description
Being the only living descendant of his grandfather, Kamran the Believer inherited all of the grandpa's belongings. The most valuable one was a piece of convex polygon shaped farm in the grandpa's birth village. The farm was originally separated from the neighboring farms by a thick rope hooked to some spikes (big nails) placed on the boundary of the polygon. But, when Kamran went to visit his farm, he noticed that the rope and some spikes are missing. Your task is to write a program to help Kamran decide whether the boundary of his farm can be exactly determined only by the remaining spikes.Input
The first line of the input file contains a single integer t (1 <= t <= 10), the number of test cases, followed by the input data for each test case. The first line of each test case contains an integer n (1 <= n <= 1000) which is the number of remaining spikes. Next, there are n lines, one line per spike, each containing a pair of integers which are x and y coordinates of the spike.Output
There should be one output line per test case containing YES or NO depending on whether the boundary of the farm can be uniquely determined from the input.Sample Input
1
6
0 0
1 2
3 4
2 0
2 4
5 0Sample Output
NOSource

/*************************************************************************
> File Name: poj_1228.cpp
> Author: Howe_Young
> Mail: 1013410795@qq.com
> Created Time: 2015年05月07日 星期四 16时44分36秒
************************************************************************/ #include <cstdio>
#include <iostream>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#define EPS 1e-8
using namespace std;
const int maxn = ;
struct point{
double x, y;
};
point p[maxn], convex[maxn];
double Min(double a, double b)
{
return a < b ? a : b;
}
double Max(double a, double b)
{
return a > b ? a : b;
}
int sgn(double x)
{
if (fabs(x) < EPS)
return ;
return x < ? - : ;
}
double x_multi(point p1, point p2, point p3)
{
return (p3.x - p1.x) * (p2.y - p1.y) - (p2.x - p1.x) * (p3.y - p1.y);
}
bool cmp(const point p1, const point p2)
{
return ((p1.y == p2.y && p1.x < p2.x) || p1.y < p2.y);
}
void convex_hull(point *p, point *convex, int n, int &len)
{
sort(p, p + n, cmp);
int top = ;
convex[] = p[];
convex[] = p[];
//找出凸包的下半部分凸壳
for (int i = ; i < n; i++)
{
while (top > && sgn(x_multi(convex[top - ], convex[top], p[i])) <= )//大于0为逆时针,小于0为顺时针
top--;
convex[++top] = p[i];
}
int tmp = top;
//找出凸包的上半部分,因为我的比较函数是写的y优先的,所以上下部分,当然也可以以x优先排序,这时候就是左右部分了
for (int i = n - ; i >= ; i--)
{
while (top > tmp && sgn(x_multi(convex[top - ], convex[top], p[i])) <= )//大于0为逆时针,小于0为顺时针
top--;
convex[++top] = p[i];//存放凸包中的点
}
len = top;
}
bool on_segment(point p1, point p2, point p3)//判断p3是否在线段p1p2上
{
double minx, miny, maxx, maxy;
minx = Min(p1.x, p2.x);
maxx = Max(p1.x, p2.x);
miny = Min(p1.y, p2.y);
maxy = Max(p1.y, p2.y);
return (sgn(x_multi(p1, p2, p3)) == && (sgn(p3.x - minx) >= && sgn(p3.x - maxx) <= && sgn(p3.y - miny) >= && sgn(p3.y - maxy) <= ));
}
bool check(point *p, point p1, point p2, int n)
{
int cnt = ;
for (int i = ; i < n; i++)
{
if (on_segment(p1, p2, p[i]))
cnt++;
}
if (cnt == n)//特判,如果给定的点成一条线时,不符合
return false;
return cnt >= ;
}
int main()
{
int kase, n;
scanf("%d", &kase);
while (kase--)
{
scanf("%d", &n);
for (int i = ; i < n; i++)
scanf("%lf %lf", &p[i].x, &p[i].y);
int len;
if (n <= )//n <= 5之前的点都是不确定的
{
puts("NO");
continue;
}
convex_hull(p, convex, n, len);
convex[len] = convex[];
bool flag = false;
for (int i = ; i < len; i++)//检查凸包中的每一个边
{
if (!check(p, convex[i], convex[i + ], n))
{
flag = true;
break;
}
}
if (!flag)
puts("YES");
else
puts("NO");
}
return ;
}
POJ 1228 Grandpa's Estate(凸包)的更多相关文章
- POJ 1228 Grandpa's Estate 凸包 唯一性
LINK 题意:给出一个点集,问能否够构成一个稳定凸包,即加入新点后仍然不变. 思路:对凸包的唯一性判断,对任意边判断是否存在三点及三点以上共线,如果有边不满足条件则NO,注意使用水平序,这样一来共线 ...
- POJ 1228 - Grandpa's Estate 稳定凸包
稳定凸包问题 要求每条边上至少有三个点,且对凸包上点数为1,2时要特判 巨坑无比,调了很长时间= = //POJ 1228 //稳定凸包问题,等价于每条边上至少有三个点,但对m = 1(点)和m = ...
- POJ 1228 Grandpa's Estate(凸包唯一性判断)
Description Being the only living descendant of his grandfather, Kamran the Believer inherited all o ...
- POJ 1228 Grandpa's Estate --深入理解凸包
题意: 判断凸包是否稳定. 解法: 稳定凸包每条边上至少有三个点. 这题就在于求凸包的细节了,求凸包有两种算法: 1.基于水平序的Andrew算法 2.基于极角序的Graham算法 两种算法都有一个类 ...
- 简单几何(求凸包点数) POJ 1228 Grandpa's Estate
题目传送门 题意:判断一些点的凸包能否唯一确定 分析:如果凸包边上没有其他点,那么边想象成橡皮筋,可以往外拖动,这不是唯一确定的.还有求凸包的点数<=2的情况一定不能确定. /********* ...
- poj - 1228 - Grandpa's Estate
题意:原来一个凸多边形删去一些点后剩n个点,问这个n个点能否确定原来的凸包(1 <= 测试组数t <= 10,1 <= n <= 1000). 题目链接:http://poj. ...
- 【POJ】1228 Grandpa's Estate(凸包)
http://poj.org/problem?id=1228 随便看看就能发现,凸包上的每条边必须满足,有相邻的边和它斜率相同(即共线或凸包上每个点必须一定在三点共线上) 然后愉快敲完凸包+斜率判定, ...
- 【POJ 1228】Grandpa's Estate 凸包
找到凸包后暴力枚举边进行$check$,注意凸包是一条线(或者说两条线)的情况要输出$NO$ #include<cmath> #include<cstdio> #include ...
- poj 1228 稳定凸包
Grandpa's Estate Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 12337 Accepted: 3451 ...
随机推荐
- 缓存淘汰算法---LRU
1. LRU1.1. 原理 LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是“如果数据最近被访问过,那么将来被访问的几率也更高”. ...
- java项目导出jar文件时指定main方法的类
需要先运行一下main函数,eclipse的Export-->Runnable JAR File ---> 下的Launch configuration下拉列表才会有记录.如果想要删除下拉 ...
- App的token机制
这只是网上看来的后期可能还会修改. 理论版的描述如下: (1) 服务器接收到app发送的用户名和密码后,验证用户名和密码是否正确. 如果错误则返回错误信息. 如果验证正确,生成一个随机的不重复的tok ...
- Gunicorn快速入门
Gunicorn (独角兽)是一个高效的Python WSGI Server,通常用它来运行 wsgi application(由我们自己编写遵循WSGI application的编写规范) 或者 w ...
- 错误: 找不到或无法加载主类 scala.tools.nsc.MainGenericRunner
错误: 找不到或无法加载主类 scala.tools.nsc.MainGenericRunner 原因: Sacala安装路径中包含空格.
- WM_SIZE和WM_MOVE的函数体内容为什么不一样?
搞不懂,要想一想- procedure TWinControl.WMSize(var Message: TWMSize); begin UpdateBounds; // 类函数 inherited; ...
- MySQL使用rand函数实现随机数
sql 的随机函数newID()和RAND() sql server的随机函数newID()和RAND() SELECT * FROM Northwind..Orders ORDER BY NEWID ...
- JFS 文件系统概述及布局分析
JFS 文件系统概述及布局分析 日志文件系统如何缩短系统重启时间 如果发生系统崩溃,JFS 提供了快速文件系统重启.通过使用数据库日志技术,JFS 能在几秒或几分钟之内把文件系统恢复到一致状态,而非日 ...
- Linux&shell 之Shell命令进阶
写在前面:案例.常用.归类.解释说明.(By Jim) 监控程序a.进程查看ps -ef(-e表示系统上运行的所有进程,-f用于扩展输出一些有用的信息列.)ps -efH(-H参数可以将进程组织为分层 ...
- 动态规划(斜率优化):[CEOI2004]锯木厂选址
锯木场选址(CEOI2004) 从山顶上到山底下沿着一条直线种植了n棵老树.当地的政府决定把他们砍下来.为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂. 木材只能按照一个方向运输:朝山下运.山脚下有 ...