[BZOJ 2178] 圆的面积并 【Simpson积分】
题目链接:BZOJ - 2178
题目分析
用Simpson积分,将圆按照 x 坐标分成连续的一些段,分别用 Simpson 求。
注意:1)Eps要设成 1e-13 2)要去掉被其他圆包含的圆。
代码
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm> using namespace std; typedef double LF; const LF Eps = 1e-13; const int MaxN = 1000 + 5; int n, Lc, Rc, Top, Tot; LF Lx, Rx, Ans; inline LF gmin(LF a, LF b) {return a < b ? a : b;}
inline LF gmax(LF a, LF b) {return a > b ? a : b;}
inline LF Sqr(LF x) {return x * x;} struct Point
{
LF x, y;
Point() {}
Point(LF a, LF b)
{
x = a; y = b;
}
}; inline LF Dis(Point p1, Point p2)
{
return sqrt(Sqr(p1.x - p2.x) + Sqr(p1.y - p2.y));
} struct Circle
{
Point o;
LF r;
} C[MaxN], S[MaxN]; inline bool Cmp1(Circle c1, Circle c2)
{
return c1.r < c2.r;
} inline bool Cmp2(Circle c1, Circle c2)
{
return c1.o.x - c1.r < c2.o.x - c2.r;
} bool Del[MaxN]; struct Segment
{
LF l, r;
} Seg[MaxN]; inline bool Cmp3(Segment s1, Segment s2)
{
return s1.l < s2.l;
} inline LF f(LF x)
{
LF ret = 0.0, p, q, Hi;
Top = 0;
for (int i = Lc; i <= Rc; ++i)
{
if (x <= S[i].o.x - S[i].r || x >= S[i].o.x + S[i].r) continue;
Hi = sqrt(Sqr(S[i].r) - Sqr(S[i].o.x - x));
Seg[++Top].l = S[i].o.y - Hi; Seg[Top].r = S[i].o.y + Hi;
}
sort(Seg + 1, Seg + Top + 1, Cmp3);
for (int i = 1, j; i <= Top; ++i)
{
p = Seg[i].l; q = Seg[i].r;
for (j = i + 1; j <= Top; ++j)
{
if (Seg[j].l > q) break;
if (Seg[j].r > q) q = Seg[j].r;
}
ret += q - p; i = j - 1;
}
return ret;
} inline LF Simpson(LF l, LF r, LF fl, LF fmid, LF fr)
{
return (fl + 4.0 * fmid + fr) * (r - l) / 6.0;
} inline LF RSimpson(LF l, LF r, LF fl, LF fmid, LF fr)
{
LF mid, p, q, x, y, z;
mid = (l + r) / 2.0;
p = f((l + mid) / 2.0); q = f((mid + r) / 2.0);
x = Simpson(l, r, fl, fmid, fr);
y = Simpson(l, mid, fl, p, fmid);
z = Simpson(mid, r, fmid, q, fr);
if (fabs(x - y - z) < Eps) return y + z;
else return RSimpson(l, mid, fl, p, fmid) + RSimpson(mid, r, fmid, q, fr);
} int main()
{
scanf("%d", &n);
int a, b, c;
for (int i = 1; i <= n; ++i)
{
scanf("%d%d%d", &a, &b, &c);
C[i].o = Point((LF)a, (LF)b);
C[i].r = (LF)c;
}
sort(C + 1, C + n + 1, Cmp1);
memset(Del, 0, sizeof(Del));
for (int i = 1; i <= n; ++i)
for (int j = i + 1; j <= n; ++j)
if (Dis(C[i].o, C[j].o) <= C[j].r - C[i].r)
{
Del[i] = true;
break;
}
Tot = 0;
for (int i = 1; i <= n; ++i)
if (!Del[i]) S[++Tot] = C[i];
sort(S + 1, S + Tot + 1, Cmp2);
Ans = 0.0;
for (int i = 1, j; i <= Tot; ++i)
{
Lc = i; Rc = i; Lx = S[i].o.x - S[i].r; Rx = S[i].o.x + S[i].r;
for (j = i + 1; j <= Tot; ++j)
{
if (S[j].o.x - S[j].r > Rx) break;
if (S[j].o.x + S[j].r > Rx) Rx = S[j].o.x + S[j].r;
}
Rc = j - 1; i = j - 1;
Ans += RSimpson(Lx, Rx, f(Lx), f((Lx + Rx) / 2.0), f(Rx));
}
printf("%.3lf\n", Ans);
return 0;
}
[BZOJ 2178] 圆的面积并 【Simpson积分】的更多相关文章
- BZOJ 2178 圆的面积并 ——Simpson积分
[题目分析] 史上最良心样例,史上最难调样例. Simpson积分硬上. 听说用long double 精度1e-10才能过. 但是double+1e-6居然过了. [代码] #include < ...
- BZOJ 2178: 圆的面积并 [辛普森积分 区间并]
2178: 圆的面积并 Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 1740 Solved: 450[Submit][Status][Discus ...
- bzoj 2178 圆的面积并 —— 辛普森积分
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2178 先看到这篇博客:https://www.cnblogs.com/heisenberg- ...
- bzoj 2178 圆的面积并——辛普森积分
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2178 把包含的圆去掉.横坐标不相交的一段一段圆分开算.算辛普森的时候预处理 f( ) ,比如 ...
- BZOJ 2178: 圆的面积并 (辛普森积分)
code #include <set> #include <cmath> #include <cstdio> #include <cstring> #i ...
- bzoj 2178 圆的面积并【simpson积分】
直接套simpson,f可以直接把圆排序后扫一遍所有圆,这样维护一个区间就可以避免空段. 然而一定要去掉被其他圆完全覆盖的圆,否则会TLE #include<iostream> #incl ...
- 【BZOJ】2178: 圆的面积并
http://www.lydsy.com/JudgeOnline/problem.php?id=2178 题意:给出n<=1000个圆,求这些圆的面积并 #include <cstdio& ...
- BZOJ 1845: [Cqoi2005] 三角形面积并 (辛普森积分)
大力辛普森积分 精度什么的搞了我好久- 学到了Simpson的一个trick 深度开11,eps开1e-4.跑的比有些扫描线还快- CODE #include <bits/stdc++.h> ...
- BZOJ 1502 月下柠檬树(simpson积分)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1502 题意:给出如下一棵分层的树,给出每层的高度和每个面的半径.光线是平行的,与地面夹角 ...
随机推荐
- [Redux] Fetching Data on Route Change
We will learn how to fire up an async request when the route changes. A mock server data: /** /api/i ...
- chmod -R o+rX /data
When using chmod -R o+rx /data , you set the execute permission on all directories as well as files ...
- 让IE支持Css3属性(圆角、阴影、渐变)
>>>>>>>>>>>>>>>>>>>>>>>>> ...
- PhotoShop常用快捷键(1)
一.工具栏工具 移动工具 [V] 矩形.椭圆选框工具 [M] 套索.多边形套索.磁性套索 [L] 快速选择.魔棒工具[W] 裁剪工具 [C] 吸管.颜色取样器 [I] 修补.污点修复[J] 画笔工具 ...
- thinkphp3.2.x版本中图片上传缩略图的解决方案
调用方式很简单 get_sc($cover_id,[$width=180,$height=auto,$cut]) @param $cover_id 图片ID___ @param $width 宽度__ ...
- node express
在某QQ群里,发现大家都在搞node,为了不被out,这周主要研究了一下,还挺高大上. 参考了下资料,适合初学者学习. Node和NPM的安装够便捷了,不细说...有几点基础顺手提一下: 安装命令中的 ...
- 【原创教程】鲸吞HTML
首先,我们的angularJS课程分为三大模块: HTML/CSS/JS基础. angularJS详解. angualrJS的一些实用框架讲解. 其中,第一大模块的对象是对前端开发技术有点了解但不熟悉 ...
- 【原创教程】一、Angular教程系列之认识angular
为什么我会准备写这个原创教程系列? 写下这个标题之后,看着屏幕上空白的内容区,不知从何下手,想说的似乎有很多,似乎又没啥说的.有时候就会陷入这种矛盾中,有时候就是这样,于是,我下定决心这一次一定要把这 ...
- dynamic 和var
dynamic,编译后被转换成带有 dynamicAttribute的object对象,可用在方法参数,返回值活或者局部变量上 执行过程: 运行时绑定首先会检查是否继承IDynamicMetaObje ...
- CodeSmith中SchemaExplorer属性的介绍
CodeSmith与数据库的联系,在CodeSmith中自带一个程序集SchemaExplorer.dll,这个程序集中的类主要用于获取数据库中各种对象的结构. <%@ Property Nam ...