UVA 1563 - SETI

option=com_onlinejudge&Itemid=8&page=show_problem&category=520&problem=4338&mosmsg=Submission+received+with+ID+14015694" target="_blank" style="">题目链接

题意:依据题目那个式子。构造一个序列,能生成对应字符串

思路:依据式子能构造出n个方程。一共解n个未知量,利用高斯消元去解,中间过程有取摸过程。所以遇到除法的时候要使用逆元去搞

代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; const int N = 105; int pow_mod(int x, int k, int mod) {
int ans = 1;
while (k) {
if (k&1) ans = ans * x % mod;
x = x * x % mod;
k >>= 1;
}
return ans;
} int inv(int a, int n) {
return pow_mod(a, n - 2, n);
} int t, p, n, A[N][N];
char str[N]; int hash(int c) {
if (c == '*') return 0;
return c - 'a' + 1;
} void build() {
for (int i = 0; i < n; i++) {
A[i][n] = hash(str[i]);
int tmp = 1;
for (int j = 0; j < n; j++) {
A[i][j] = tmp;
tmp = tmp * (i + 1) % p;
}
}
} void gauss() {
for (int i = 0; i < n; i++) {
int r;
for (r = i; r < n; i++)
if (A[r][i]) break;
if (r == n) continue;
for (int j = i; j <= n; j++) swap(A[r][j], A[i][j]);
for (int j = 0; j < n; j++) {
if (i == j) continue;
if (A[j][i]) {
int tmp = A[j][i] * inv(A[i][i], p) % p;
for (int k = i; k <= n; k++) {
A[j][k] = (((A[j][k] - tmp * A[i][k]) % p) + p) % p;
}
}
}
}
for (int i = 0; i < n; i++)
printf("%d%c", A[i][n] * inv(A[i][i], p) % p, i == n - 1 ? '\n' : ' ');
} int main() {
scanf("%d", &t);
while (t--) {
scanf("%d%s", &p, str);
n = strlen(str);
build();
gauss();
}
return 0;
}

UVA 1563 - SETI (高斯消元+逆元)的更多相关文章

  1. POJ.2065.SETI(高斯消元 模线性方程组)

    题目链接 \(Description\) 求\(A_0,A_1,A_2,\cdots,A_{n-1}\),满足 \[A_0*1^0+A_1*1^1+\ldots+A_{n-1}*1^{n-1}\equ ...

  2. UVA 11542 - Square(高斯消元)

    UVA 11542 - Square 题目链接 题意:给定一些数字.保证这些数字质因子不会超过500,求这些数字中选出几个,乘积为全然平方数,问有几种选法 思路:对每一个数字分解成质因子后.发现假设要 ...

  3. poj 2065 SETI 高斯消元

    看题就知道要使用高斯消元求解! 代码如下: #include<iostream> #include<algorithm> #include<iomanip> #in ...

  4. POJ 2065 SETI [高斯消元同余]

    题意自己看,反正是裸题... 普通高斯消元全换成模意义下行了 模模模! #include <iostream> #include <cstdio> #include <c ...

  5. POJ2065 SETI 高斯消元

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - POJ2065 题意概括 多组数据,首先输入一个T表示数据组数,然后,每次输入一个质数,表示模数,然后,给出一 ...

  6. UVa 11542 Square (高斯消元)

    题意:给定 n 个数,从中选出一个,或者是多个,使得选出的整数的乘积是完全平方数,求一共有多少种选法,整数的素因子不大于 500. 析:从题目素因子不超过 500,就知道要把每个数进行分解.因为结果要 ...

  7. POJ SETI 高斯消元 + 费马小定理

    http://poj.org/problem?id=2065 题目是要求 如果str[i] = '*'那就是等于0 求这n条方程在%p下的解. 我看了网上的题解说是高斯消元 + 扩展欧几里德. 然后我 ...

  8. POJ2065 SETI(高斯消元 同模方程)

    (a1 * 1^0  +   a2 * 1^1  + ...  an * 1^n - 1) % P = f1 .... (a1 * n^0  +   a2 * n^1  + ...  an - 1 * ...

  9. POJ 2065 SETI 高斯消元解线性同余方程

    题意: 给出mod的大小,以及一个不大于70长度的字符串.每个字符代表一个数字,且为矩阵的增广列.系数矩阵如下 1^0 * a0 + 1^1 * a1 + ... + 1^(n-1) * an-1 = ...

随机推荐

  1. linux下安装rabbitmq以及在spring中进行集成

    ### 一.安装erlang 1. yum install ncurses-devel 2. ./configure --prefix=/usr/local/erlang20 --without-ja ...

  2. [Apple开发者帐户帮助]三、创建证书(7)创建证书签名请求

    Mac上的Keychain Access允许您创建证书签名请求(CSR). 启动位于的Keychain Access /Applications/Utilities. 选择Keychain Acces ...

  3. android view、viewgroup 事件响应拦截处理机制

    文章中会用到部分网络资源,首先将原作者的链接附上. 但是还是会附上数量较大的关于此部分内容的自己的思考. ----------------------------------------------- ...

  4. django模型层(二)

    多表操作 创建模型 实例:我们来假定下面这些概念,字段和关系 作者模型:一个作者有姓名和年龄. 作者详细模型:把作者的详情放到详情表,包含生日,手机号,家庭住址等信息.作者详情模型和作者模型之间是一对 ...

  5. RFC1867 HTTP file upload

    RFC1867 HTTP file upload RFC1867 is the standard definition of that "Browse..." button tha ...

  6. 如何在Eclipse中创建Web服务器

    使用Eclipse开发Web项目时,需要先配置Web服务器,如果已经配置好Web服务器,就不需要再重新配置了.也就是说,本节的内容不是开发每个项目时,都必须经过的步骤.创建Web服务器的具体步骤如下: ...

  7. 深入浅出java多态

    所谓多态就是指程序中定义的引用变量所指向的具体类型和通过该引用变量发出的方法调用在编程时并不确定,而是在程序运行期间才确定,即一个引用变量倒底会指向哪个类的实例对象,该引用变量发出的方法调用到底是哪个 ...

  8. Windows Phone 应用程序的生命周期(二)

    一.App.xaml.cs /// <summary> /// Application 对象的构造函数. /// </summary> public App() { // 未捕 ...

  9. 如何安全使用dispatch_sync

    概述 iOS开发者在与线程打交道的方式中,使用最多的应该就是GCD框架了,没有之一.GCD将繁琐的线程抽象为了一个个队列,让开发者极易理解和使用.但其实队列的底层,依然是利用线程实现的,同样会有死锁的 ...

  10. 【WPS】表格使用VBA宏编程写入ini文件实现软件多语言

    前言:公司软件最近在做多语言版本,而又来一个西班牙文版本的,之前已经做过中文版本,英文版本和法文版本,之前是同事做的,现在安排我做,之前的做法,使用wps表格,翻译好,然后一个一个复制粘贴到ini文件 ...