You live in the universe X where all the

physical laws and constants are different

from ours. For example all of their objects

are N-dimensional. The living beings

of the universe X want to build an

N-dimensional monument. We can consider

this N dimensional monument as an

N-dimensional hyper-box, which can be

divided into some N dimensional hypercells.

The length of each of the sides of

a hyper-cell is one. They will use some

N-dimensional bricks (or hyper-bricks) to

build this monument. But the length of

each of the N sides of a brick cannot be

anything other than fibonacci numbers. A

fibonacci sequence is given below:

1, 2, 3, 5, 8, 13, 21, . . .

As you can see each value starting from 3 is the sum of previous 2 values. So for N = 3 they can

use bricks of sizes (2,5,3), (5,2,2) etc. but they cannot use bricks of size (1,2,4) because the length 4

is not a fibonacci number. Now given the length of each of the dimension of the monument determine

the minimum number of hyper-bricks required to build the monument. No two hyper-bricks should

intersect with each other or should not go out of the hyper-box region of the monument. Also none of

the hyper-cells of the monument should be empty.

Input

First line of the input file is an integer T (1 ≤ T ≤ 100) which denotes the number of test cases. Each

test case starts with a line containing N (1 ≤ N ≤ 15) that denotes the dimension of the monument

and the bricks. Next line contains N integers the length in each dimension. Each of these integers will

be between 1 and 2000000000 inclusive.

Output

For each test case output contains a line in the format Case x: M where x is the case number (starting

from 1) and M is the minimum number of hyper-bricks required to build the monument.

Sample Input

2

2

4 4

3

5 7 8

Sample Output

Case 1: 4

Case 2: 2

题意: 给一个n维空间的的物体,给出每一维的长度。问有最少几个比它体积小的物体组成它,要求这些物体的边必须是斐波那契数列

里边的数。

思路: 假设边长是斐波那契数就无论他,假设不是,比这个边长小的最大的斐波数减起,一直减到0。减了几个斐波数。也就是这条边

最少分解成几个斐波数,最后每一维相乘即为结果。

#include<stdio.h>
#include<string.h>
int fb[60];
int main(){
int t,ok,n,cas=1;
int a[20];
fb[1]=1; fb[2]=2;
for(int i=3;i<55;i++)
fb[i]=fb[i-1]+fb[i-2];
scanf("%d",&t);
while(t--){
int cnt=0;
long long sum=1;//结果不用long long 会错
scanf("%d",&n);
for(int i=0;i<n;++i)
scanf("%d",&a[i]);
for(int i=0;i<n;++i){
cnt=ok=0; int k;
for(int j=1;j<55;j++){
if(a[i]==fb[j]){
ok=2;
break;
}
if(a[i]<fb[j]){
ok=1;
k=j;
break;
}
}
if(ok==1){
int x=a[i];
while(x){
while(fb[k]>x)
k--;
x-=fb[k];
cnt++;
}
}
if(ok!=2)//ok==2时证明这条边是斐波数
sum*=cnt;//注意是相乘。,
}
printf("Case %d: %lld\n",cas++,sum);
}
return 0;
}

UVA 4855 Hyper Box的更多相关文章

  1. UVA 11488 Hyper Prefix Sets (Trie)

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

  2. UVA 11488 Hyper Prefix Sets (字典树)

    题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem ...

  3. uva 11488 - Hyper Prefix Sets(字典树)

    H Hyper Prefix Sets Prefix goodness of a set string is length of longest common prefix*number of str ...

  4. UVA 11488 Hyper Prefix Sets (字典树)

    https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  5. uva 11488 Hyper Prefix Sets(狂水)

    题意: 获得集合中最长前缀长度*有该前缀个数的最大值 Prefix goodness of a set string is length of longest common prefix*number ...

  6. UVa 11488 - Hyper Prefix Sets

    找 前缀长度*符合该前缀的字符串数 的最大值 顺便练了一下字典树的模板 #include <iostream> #include <cstdio> #include <c ...

  7. UVA - 11488 Hyper Prefix Sets(trie树)

    1.给n个只含0.1的串,求出这些串中前缀的最大和. 例1: 0000 0001 10101 010 结果:6(第1.2串共有000,3+3=6) 例2: 01010010101010101010 1 ...

  8. 【习题 3-10 UVA - 1587】Box

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 枚举某个顶角的三个相邻面就好. 看看这三个相邻面有没有对应的面. 以及3个相邻面的6个边. 能否分成2个a,2个b,2个c 也即每个 ...

  9. Mango Weekly Training Round #3 解题报告

    A. Codeforces 92A Chips 签到题.. #include <iostream> #include <cstdio> #include <cstring ...

随机推荐

  1. org.apache.catalina.core.StandardContext startInternal SEVERE: Error listenerStart

    问题:文件明明存在,资源找不到,报错 解决方法:原因是没有build path,这有点像.net里边的build .点击相应的文件夹选择build path ,解决问题

  2. Oracle 当输入参数允许为空时

    场景: 有一个存储过程p_test 带有多个输入参数code.name.number p_test(code IN VARCHAR2,nameIN VARCHAR2,number IN VARCHAR ...

  3. W3C标准冒泡、捕获机制

    (一) 捕获和冒泡如何相互影响 我们来做几个任务吧! 有一个前提,#parent为标签,#child为子标签,他们是嵌套关系支线任务1 //捕获模式 document.getElementById(' ...

  4. Django学习案例一(blog):二. 连接数据库

    本例使用了django默认的sqlite3数据库,配置文件不需要作调整: DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite ...

  5. bootstrap模态框和select2合用时input无法获取焦点(转)

    在bootstrap的模态框里使用select2插件,会导致select2里的input输入框没有办法获得焦点,没有办法输入. 解决方法: 1. 把页面中的  tabindex="-1&qu ...

  6. Android开发笔记(11)——DialogFragment & 点击监听

    转载请注明:http://www.cnblogs.com/igoslly/p/6931519.html DialogFragment使用 & 点击监听 /* DialogFragment是用于 ...

  7. 使用CMD建立指定格式的文件

    一.建立空文件的几种方法1.cd.>a.txtcd.表示改变当前目录为当前目录,即等于没改变:而且此命令不会有输出.>表示把命令输出写入到文件.后面跟着a.txt,就表示写入到a.txt. ...

  8. [Advanced Algorithm] - Symmetric Difference

    题目 创建一个函数,接受两个或多个数组,返回所给数组的 对等差分(symmetric difference) (△ or ⊕)数组. 给出两个集合 (如集合 A = {1, 2, 3}和集合 B = ...

  9. What is the difference between PKCS#5 padding and PKCS#7 padding

    The difference between the PKCS#5 and PKCS#7 padding mechanisms is the block size; PKCS#5 padding is ...

  10. servlet向浏览器输出信息

    package com.aaa.servlet; import javax.servlet.ServletException; import javax.servlet.annotation.WebS ...