K-近邻算法学习
# -- coding: utf-8 --
from numpy import *
import operator def createDataSet():
group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
labels = ['A','A','B','B']
return group,labels def classify0(inX,dataSet,labels,k):
print 'inX'
print inX
#获取行数
dataSetSize = dataSet.shape[0]
print 'dataSetSize:'
print dataSetSize #将用于分类的输入向量重复训练集样本的行数-训练集样本
print 'tile(inX,(dataSetSize,1))'
print tile(inX,(dataSetSize,1)) diffMat = tile(inX,(dataSetSize,1))-dataSet
print 'diffMat'
print diffMat #将差值做平方操作
sqDiffMat = diffMat**2
print 'sqDiffMat'
print sqDiffMat #将矩阵按行相加
sqDistances = sqDiffMat.sum(axis=1)
print 'sqDistances'
print sqDistances
#相加后开根号
distances = sqDistances**0.5
print'distances'
print distances #按从小到大大索引排序 假如[3,1,2],排序结果为[1,2.0],结果应该是训练集的列数
sortedDistIndicies = distances.argsort()
print 'sortedDistIndicies'
print sortedDistIndicies
classCount = {}
#遍历
for i in range(k):
#sortedDistIndicies[i]获取距离按照索引排序后的第i个值
#labels[sortedDistIndicies[i]]获取距离索引对应的Label
print 'I='+str(i)
#获取当前索引对应的标签
voteIlabel = labels[sortedDistIndicies[i]]
print 'voteIlabel='+voteIlabel
print 'classCount.get(voteIlabel,0)='+str(classCount.get(voteIlabel,0)) #对标签进行计数
classCount[voteIlabel]=classCount.get(voteIlabel,0)+1
print 'classCount'
print classCount
#对获取的标签通过数量进行逆序排序
sortedClassCount = sorted(classCount.iteritems(),key=operator.itemgetter(1),reverse=True)
print 'sortedClassCount'
print sortedClassCount
return sortedClassCount[0][0] group,labels=kNN.createDataSet();
print group
print labels
print kNN.classify0([0.1,0.2],group,labels,3)
最终的输出结果为
[[ 1. 1.1]
[ 1. 1. ]
[ 0. 0. ]
[ 0. 0.1]]
['A', 'A', 'B', 'B']
inX
[0.1, 0.2]
dataSetSize:
4
tile(inX,(dataSetSize,1))
[[ 0.1 0.2]
[ 0.1 0.2]
[ 0.1 0.2]
[ 0.1 0.2]]
diffMat
[[-0.9 -0.9]
[-0.9 -0.8]
[ 0.1 0.2]
[ 0.1 0.1]]
sqDiffMat
[[ 0.81 0.81]
[ 0.81 0.64]
[ 0.01 0.04]
[ 0.01 0.01]]
sqDistances
[ 1.62 1.45 0.05 0.02]
distances
[ 1.27279221 1.20415946 0.2236068 0.14142136]
sortedDistIndicies
[3 2 1 0]
I=0
voteIlabel=B
classCount.get(voteIlabel,0)=0
I=1
voteIlabel=B
classCount.get(voteIlabel,0)=1
I=2
voteIlabel=A
classCount.get(voteIlabel,0)=0
classCount
{'A': 1, 'B': 2}
sortedClassCount
[('B', 2), ('A', 1)]
B
K-近邻算法学习的更多相关文章
- 机器学习2—K近邻算法学习笔记
Python3.6.3下修改代码中def classify0(inX,dataSet,labels,k)函数的classCount.iteritems()为classCount.items(),另外p ...
- 02-16 k近邻算法
目录 k近邻算法 一.k近邻算法学习目标 二.k近邻算法引入 三.k近邻算法详解 3.1 k近邻算法三要素 3.1.1 k值的选择 3.1.2 最近邻算法 3.1.3 距离度量的方式 3.1.4 分类 ...
- 机器学习实战 - python3 学习笔记(一) - k近邻算法
一. 使用k近邻算法改进约会网站的配对效果 k-近邻算法的一般流程: 收集数据:可以使用爬虫进行数据的收集,也可以使用第三方提供的免费或收费的数据.一般来讲,数据放在txt文本文件中,按照一定的格式进 ...
- R语言学习笔记—K近邻算法
K近邻算法(KNN)是指一个样本如果在特征空间中的K个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性.即每个样本都可以用它最接近的k个邻居来代表.KNN算法适 ...
- 基本分类方法——KNN(K近邻)算法
在这篇文章 http://www.cnblogs.com/charlesblc/p/6193867.html 讲SVM的过程中,提到了KNN算法.有点熟悉,上网一查,居然就是K近邻算法,机器学习的入门 ...
- 从K近邻算法谈到KD树、SIFT+BBF算法
转自 http://blog.csdn.net/v_july_v/article/details/8203674 ,感谢july的辛勤劳动 前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章 ...
- 机器学习——KNN算法(k近邻算法)
一 KNN算法 1. KNN算法简介 KNN(K-Nearest Neighbor)工作原理:存在一个样本数据集合,也称为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分 ...
- 分类算法----k近邻算法
K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一.该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的 ...
- 用Python从零开始实现K近邻算法
KNN算法的定义: KNN通过测量不同样本的特征值之间的距离进行分类.它的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别.K通 ...
- K近邻算法小结
什么是K近邻? K近邻一种非参数学习的算法,可以用在分类问题上,也可以用在回归问题上. 什么是非参数学习? 一般而言,机器学习算法都有相应的参数要学习,比如线性回归模型中的权重参数和偏置参数,SVM的 ...
随机推荐
- [JAVA · 0基础]:3.转义字符
定义 全部的ASCII码都能够用"\"加数字(通常是8进制数字)来表示.而C中定义了一些字母前加"\"来表示常见的那些不能显示的ASCII字符,如\0,\t,\ ...
- 【甘道夫】Sqoop1.99.3基础操作--导入Oracle的数据到HDFS
第一步:进入clientShell fulong@FBI008:~$ sqoop.sh client Sqoop home directory: /home/fulong/Sqoop/sqoop-1. ...
- hdu 5269 ZYB loves Xor I && BestCoder Round #44
题意: ZYB喜欢研究Xor,如今他得到了一个长度为n的数组A. 于是他想知道:对于全部数对(i,j)(i∈[1,n],j∈[1,n]).lowbit(AixorAj)之和为多少.因为答案可能过大,你 ...
- Majority Element:主元素
Given an array of size n, find the majority element. The majority element is the element that appear ...
- nyoj-673-悟空的难题(数组标记)
悟空的难题 时间限制:1000 ms | 内存限制:65535 KB 难度:2 描写叙述 自从悟空当上了齐天大圣.花果山上的猴子猴孙们便也能够尝到天上的各种仙果神酒,所以猴子猴孙们的体质也得到了非 ...
- hdoj--3552--I can do it!(贪心模拟)
I can do it! Time Limit: 2000/2000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) Tot ...
- Struts2中Struts.xml的作用
struts.xml 为Struts 2的核心配置文件.struts.xml文件主要负责管理应用中的Action映射,以及该Action包含的Result定义等.struts.xml中主要配置Stru ...
- 5.IntellijIDEA常用快捷键总结
转自:https://blog.csdn.net/qq_17586821/article/details/52554731下面的这些常用快捷键需要在实际操作中不断地体会才能真正感受到它们的方便之处. ...
- 搭建Mysql双机热备 (主从同步)
准备两台centos7主机:10.0.18.132 master 10.0.18.136 slave 先把selinux关闭,iptables关闭 或者添加端口 132 master安装好Mysq ...
- SharePoint 2010 开发人员学习指南
kaneboy 翻译,一切内容版权归 Microsoft.1. SharePoint 开发起步教程 这是一个为准备进入到 SharePoint 开发领域的 .NET 开发人员所准备的免费在线学习课程. ...