C. An impassioned circulation of affection
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Nadeko's birthday is approaching! As she decorated the room for the party, a long garland of Dianthus-shaped paper pieces was placed on a prominent part of the wall. Brother Koyomi will like it!

Still unsatisfied with the garland, Nadeko decided to polish it again. The garland has n pieces numbered from 1 to n from left to right, and the i-th piece has a colour si, denoted by a lowercase English letter. Nadeko will repaint at most m of the pieces to give each of them an arbitrary new colour (still denoted by a lowercase English letter). After this work, she finds out all subsegments of the garland containing pieces of only colour c — Brother Koyomi's favourite one, and takes the length of the longest among them to be the Koyomity of the garland.

For instance, let's say the garland is represented by "kooomo", and Brother Koyomi's favourite colour is "o". Among all subsegments containing pieces of "o" only, "ooo" is the longest, with a length of 3. Thus the Koyomity of this garland equals 3.

But problem arises as Nadeko is unsure about Brother Koyomi's favourite colour, and has swaying ideas on the amount of work to do. She has q plans on this, each of which can be expressed as a pair of an integer mi and a lowercase letter ci, meanings of which are explained above. You are to find out the maximum Koyomity achievable after repainting the garland according to each plan.

Input

The first line of input contains a positive integer n (1 ≤ n ≤ 1 500) — the length of the garland.

The second line contains n lowercase English letters s1s2... sn as a string — the initial colours of paper pieces on the garland.

The third line contains a positive integer q (1 ≤ q ≤ 200 000) — the number of plans Nadeko has.

The next q lines describe one plan each: the i-th among them contains an integer mi (1 ≤ mi ≤ n) — the maximum amount of pieces to repaint, followed by a space, then by a lowercase English letter ci — Koyomi's possible favourite colour.

Output

Output q lines: for each work plan, output one line containing an integer — the largest Koyomity achievable after repainting the garland according to it.

Examples
input
6
koyomi
3
1 o
4 o
4 m
output
3
6
5
input
15
yamatonadeshiko
10
1 a
2 a
3 a
4 a
5 a
1 b
2 b
3 b
4 b
5 b
output
3
4
5
7
8
1
2
3
4
5
input
10
aaaaaaaaaa
2
10 b
10 z
output
10
10
Note

In the first sample, there are three plans:

  • In the first plan, at most 1 piece can be repainted. Repainting the "y" piece to become "o" results in "kooomi", whose Koyomity of 3 is the best achievable;
  • In the second plan, at most 4 pieces can be repainted, and "oooooo" results in a Koyomity of 6;
  • In the third plan, at most 4 pieces can be repainted, and "mmmmmi" and "kmmmmm" both result in a Koyomity of 5.
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<sstream>
#include<algorithm>
#include<queue>
#include<deque>
#include<iomanip>
#include<vector>
#include<cmath>
#include<map>
#include<stack>
#include<set>
#include<fstream>
#include<memory>
#include<list>
#include<string>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
#define MAXN 1590
#define N 26
#define MOD 1000000
#define INF 1000000009
const double eps = 1e-;
const double PI = acos(-1.0);
/*
一开始的思路:线段相连,一直求相连的长度最长的两个线段增加的c字符数目,减少m的次数,一直到无法增加
编程复杂,时间复杂度高
题解:
首先 目的是让要求的字符c的连续串长度最长,那么我们应该在一个c的连续串附近交换字符,否则无法增大最优解
对于每一个字符c和长度,枚举出需要交换m个c字符的时候最长连续序列的长度然后直接查询!
*/
int ans[N][MAXN], l ,n;
char s[MAXN];
int main()
{
scanf("%d", &l);
scanf("%s", s);
for (int c = ; c < N; c++)
{
for (int i = ; i < l; i++)
{
int dif = ;
for (int j = i; j < l; j++)
{
if (s[j] != c + 'a')
dif++;
ans[c][dif] = max(ans[c][dif], j - i + );
}
}
for (int i = ; i <= l; i++)
ans[c][i] = max(ans[c][i], ans[c][i - ]);
}
scanf("%d", &n);
int m;
char c;
while (n--)
{
scanf("%d %c", &m, &c);
m = min(l, m);
printf("%d\n", ans[c-'a'][m]);
}
}

Codeforces Round #418 (Div. 2) C. An impassioned circulation of affection的更多相关文章

  1. Codeforces Round #418 (Div. 2) D. An overnight dance in discotheque

    Codeforces Round #418 (Div. 2) D. An overnight dance in discotheque 题意: 给\(n(n <= 1000)\)个圆,圆与圆之间 ...

  2. Codeforces Round #418 (Div. 2).C two points

    C. An impassioned circulation of affection time limit per test 2 seconds memory limit per test 256 m ...

  3. Codeforces Round #418 (Div. 2) A+B+C!

    终判才知道自己失了智.本场据说是chinese专场,可是请允许我吐槽一下题意! A. An abandoned sentiment from past shabi贪心手残for循环边界写错了竟然还过了 ...

  4. Codeforces Round #418 (Div. 2)

    A: 不细心WA了好多次 题意:给你一个a序列,再给你个b序列,你需要用b序列中的数字去替换a序列中的0,如果能够替换,则需要判断a是否能构成一个非递增的序列,a,b中所有的数字不会重复 思路:就是一 ...

  5. Codeforces Round #418 (Div. 2) B. An express train to reveries

    time limit per test 1 second memory limit per test 256 megabytes input standard input output standar ...

  6. Codeforces Round #418 (Div. 2)D

    给n个圆要么包含,要么相分离,没有两个公共点,当成一棵树,把包含的面积大的放在上面 如图最上面的par记为-1,level记为0,当par==-1||level==1时就加否则减, 就是第一,二层先加 ...

  7. Codeforces Round #418 (Div. 2) C

    Description Nadeko's birthday is approaching! As she decorated the room for the party, a long garlan ...

  8. Codeforces Round #418 (Div. 2) B

    Description Sengoku still remembers the mysterious "colourful meteoroids" she discovered w ...

  9. Codeforces Round #418 (Div. 2) A

    Description A few years ago, Hitagi encountered a giant crab, who stole the whole of her body weight ...

随机推荐

  1. 关于pycharm中pip版本10.0无法使用的解决办法

    背景: 近期在利用 pycharm 安装第三方库时会提示 pip 不是最新版本, 因此对 pip 进行更新,但是生成最新版本之后, pip 中由于缺少 main 函数,导致在 pycharm 中无法自 ...

  2. PCB Genesis 外形加内角孔实现方法

    在PCB工程制作CAM时,经常会遇到外形拐角处直角的,而客户对内角是要求,比如最大内角要求R0.5mm或者不接受内角, 但成型方式为铣方式,又不是啤板成型,那怎么处理才可以达到要求效果呢,在这里介绍2 ...

  3. Django models的诡异异常RelatedObjectDoesNotExist

    models代码如下: class Course(models.Model): name = models.CharField(unique=True, max_length=64) price = ...

  4. 【知识总结】多项式全家桶(二)(ln和exp)

    上一篇:[知识总结]多项式全家桶(一)(NTT.加减乘除和求逆) 一.对数函数\(\ln(A)\) 求一个多项式\(B(x)\),满足\(B(x)=\ln(A(x))\). 这里需要一些最基本的微积分 ...

  5. html表单代码演示

    <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/stri ...

  6. Hadoop Hive概念学习系列之hive里的用户定义函数UDF(十七)

    Hive可以通过实现用户定义函数(User-Defined Functions,UDF)进行扩展(事实上,大多数Hive功能都是通过扩展UDF实现的).想要开发UDF程序,需要继承org.apache ...

  7. Jquery课堂上课了,第一节Jquery选择器$

    Jquery是优秀的Javascrīpt框架,$是jquery库的申明,它很不稳定(我就常遇上),换一种稳定的写法jQuery.noConflict();                   jQue ...

  8. 数字签名与数字证书以及https

    数字签名与数字证书以及httpshttps://blog.csdn.net/lzghxjt/article/details/79604602

  9. [转]Linux下/proc目录简介

    1. /proc目录Linux 内核提供了一种通过 /proc 文件系统,在运行时访问内核内部数据结构.改变内核设置的机制.proc文件系统是一个伪文件系统,它只存在内存当中,而不占用外存空间.它以文 ...

  10. Android项目实战_手机安全卫士程序锁

    ###1.两个页面切换的实现1. 可以使用Fragment,调用FragmentTransaction的hide和show方法2. 可以使用两个布局,设置visibility的VISIABLE和INV ...