CDC之fast->slow (2)
1 Open-loop solution
One potential solution is to assert CDC signals for a period of time that exceeds the cycle time of the sampling clock as shown in Figure. As discussed in fast->slow (1), the minimum pulse width is 1.5X the period of the receiving clock frequency. The assumption is that the CDC signal will be sampled at least once and possibly twice by the receiver clock.

Advantage: it is the fastest way to pass signals across CDC boundaries that does not require acknowledgement of the received signal.
Disadvantage: the largest potential problem is that another engineer might mistake the solution for a general purpose solution, or the design requirements might change and an engineer might fail to re-analyze the original open loop solution. This problem can be minimized by adding a SystemVerilog Assertion to the model to detect if the input pulse ever fails to exceed the "three edges" design requirement.
2 Closed-loop solution
A second potential solution is to send an enabling control signal, synchronize it into the new clock domain and then pass the synchronized signal back through another synchronizer to the sending clock domain as an acknowledge signal.

Advantage: synchronizing a feedback signal is very safe to acknowledge that the first control signal was recognized and sampled into the new clock domain.
Disadvantage: there is potentially considerable delay associated with synchronizing control signals in both directions before allowing the control signal to change.
CDC之fast->slow (2)的更多相关文章
- leetcode bugfree note
463. Island Perimeterhttps://leetcode.com/problems/island-perimeter/就是逐一遍历所有的cell,用分离的cell总的的边数减去重叠的 ...
- [LeetCode] Linked List Cycle II 单链表中的环之二
Given a linked list, return the node where the cycle begins. If there is no cycle, return null. Foll ...
- BUG-FREE-For Dream
一直直到bug-free.不能错任何一点. 思路不清晰:刷两天. 做错了,刷一天. 直到bug-free.高亮,标红. 185,OA(YAMAXUN)--- (1) findFirstDuplicat ...
- 二刷Cracking the Coding Interview(CC150第五版)
第18章---高度难题 1,-------另类加法.实现加法. 另类加法 参与人数:327时间限制:3秒空间限制:32768K 算法知识视频讲解 题目描述 请编写一个函数,将两个数字相加.不得使用+或 ...
- (lintcode全部题目解答之)九章算法之算法班题目全解(附容易犯的错误)
--------------------------------------------------------------- 本文使用方法:所有题目,只需要把标题输入lintcode就能找到.主要是 ...
- Lintcode 166. 链表倒数第n个节点
----------------------------------- 最开始的想法是先计算出链表的长度length,然后再从头走 length-n 步即是需要的位置了. AC代码: /** * De ...
- Lintcode 102.带环链表
------------------------ 只要设置两个指针,称为快慢指针,当链表没有环的时候快指针会走到null,当链表有环的时候快指针早晚会追上慢指针的. AC代码: /** * Defin ...
- [算法][LeetCode]Linked List Cycle & Linked List Cycle II——单链表中的环
题目要求 Linked List Cycle Given a linked list, determine if it has a cycle in it. Follow up: Can you so ...
- 面试题目——《CC150》链表
面试题2.1:编写代码,移除未排序链表中的重复结点 进阶:如果不得使用临时缓冲区,该怎么解决? package cc150; import java.util.HashMap; import java ...
- Leetcode: Circular Array Loop
You are given an array of positive and negative integers. If a number n at an index is positive, the ...
随机推荐
- scp相关命令总结
scp 跨机远程拷贝scp是secure copy的简写,用于在Linux下进行远程拷贝文件的命令,和它类似的命令有cp,不过cp只是在本机进行拷贝不能跨服务器,而且scp传输是加密的.当你服务器硬盘 ...
- mode-c++
/*感谢机房JYW的友情馈赠*/#include <iostream> #include <cstdio> #include <cstring> #include ...
- 洛谷—— P3576 [POI2014]MRO-Ant colony
https://www.luogu.org/problem/show?pid=3576 题目描述 The ants are scavenging an abandoned ant hill in se ...
- MSSQL的表备份成INSERT脚本的存储过程
USE [SupplyChain]GO/****** Object: StoredProcedure [dbo].[ExpData] Script Date: 2015-12-18 10:23:08 ...
- 整理100道 .net面试题
前段时间,我在准备面试的时搜到的一套 net开发人员面试题,感觉比较全面,一直保存在草稿,刚在整理后台时翻了出来,干脆就发出来好了,以备不时之需. 1. .NET和C#有什么区别 答:.NET一般指 ...
- iOS中的多线程NSThread/GCD/NSOperation & NSOperationQueue
iOS多线程有四套多线程方案: Pthreads NSThread GCD NSOperation & NSOperationQueue 接下来我来一个一个介绍他们 Pthreads 在类Un ...
- Hadop使用Partitioner后,结果还是一个文件,怎样解决??
近期看了一下partitioner.于是照着写了一个列子.最后发现程序并没有将结果分开写入对应的文件,结果还是一个文件,于是乎感觉是不是没实用集群去执行程序,发现control中还是本地执行的代码: ...
- 菜鸟nginx源代码剖析数据结构篇(六) 哈希表 ngx_hash_t(上)
菜鸟nginx源代码剖析数据结构篇(六) 哈希表 ngx_hash_t(上) Author:Echo Chen(陈斌) Email:chenb19870707@gmail.com Blog:Blog. ...
- luogu1312 Mayan游戏 剪枝
题目大意 Mayan puzzle是最近流行起来的一个游戏.游戏界面是一个77 行\times 5×5列的棋盘,上面堆放着一些方块,方块不能悬空堆放,即方块必须放在最下面一行,或者放在其他方块之上.游 ...
- Uboot中支持lcd和hdmi显示不同的logo图片【转】
本文转载自:http://blog.csdn.net/u010865783/article/details/54953315 在lcd为竖屏,hdmi显示横屏的情况下,如果按照默认的uboot显示框架 ...