Description

The 15-puzzle has been around for over 100 years; even if you don't know it by that name, you've seen it. It is constructed with 15 sliding tiles, each with a number from 1 to 15 on it, and all packed into a 4 by 4 frame with one tile missing. Let's call the missing tile 'x'; the object of the puzzle is to arrange the tiles so that they are ordered as:

 1  2  3  4
5 6 7 8
9 10 11 12
13 14 15 x

where the only legal operation is to exchange 'x' with one of the tiles with which it shares an edge. As an example, the following sequence of moves solves a slightly scrambled puzzle:

 1  2  3  4     1  2  3  4     1  2  3  4     1  2  3  4
5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8
9 x 10 12 9 10 x 12 9 10 11 12 9 10 11 12
13 14 11 15 13 14 11 15 13 14 x 15 13 14 15 x
r-> d-> r->

The letters in the previous row indicate which neighbor of the 'x' tile is swapped with the 'x' tile at each step; legal values are 'r','l','u' and 'd', for right, left, up, and down, respectively.

Not all puzzles can be solved; in 1870, a man named Sam Loyd was famous for distributing an unsolvable version of the puzzle, and
frustrating many people. In fact, all you have to do to make a regular puzzle into an unsolvable one is to swap two tiles (not counting the missing 'x' tile, of course).

In this problem, you will write a program for solving the less well-known 8-puzzle, composed of tiles on a three by three
arrangement.

Input

You will receive, several descriptions of configuration of the 8 puzzle. One description is just a list of the tiles in their initial positions, with the rows listed from top to bottom, and the tiles listed from left to right within a row, where the tiles are represented by numbers 1 to 8, plus 'x'. For example, this puzzle

1 2 3
x 4 6
7 5 8

is described by this list:

1 2 3 x 4 6 7 5 8

Output

You will print to standard output either the word ``unsolvable'', if the puzzle has no solution, or a string consisting entirely of the letters 'r', 'l', 'u' and 'd' that describes a series of moves that produce a solution. The string should include no spaces and start at the beginning of the line. Do not print a blank line between cases.

Sample Input

2 3 4 1 5 x 7 6 8

Sample Input

2 3 4 1 5 x 7 6 8
题意 : 就是8数码问题,主要时搜索的路径寻找问题,把'x'转换为0,然后把当前这些数都存储为1个状态
分析: 这道题有两道相同的,分别是HDU和POJ,HDU上的数据加强了比POJ更麻烦。。
POJ:正向搜索就好(简单)
 #include <iostream>
#include <cstring> using namespace std; const int maxn = ;
typedef int State[];
State st[maxn];
int goal[] = {, , , , , , , , };
int dx[] = {-, , , };
int dy[] = { , , -, };
int head[maxn], nxt[maxn], fa[maxn];
char dir[maxn]; int Hash(State s) //哈希函数
{
int ret = , i;
for(i = ; i < ; i++) ret = ret * + s[i];
return ret % maxn;
} bool try_to_insert(int rear) //插入哈希表
{
int h = Hash(st[rear]);
for(int e = head[h]; e != -; e = nxt[e])
{
if(memcmp(st[e], st[rear], sizeof(st[e])) == ) return ;
}
nxt[rear] = head[h];
head[h] = rear;
return ;
} int bfs() //遍历
{
int frt = , rear = , i, z;
while(frt < rear)
{
State& s = st[frt];
if(memcmp(s, goal, sizeof(s)) == ) return frt;
for(z = ; s[z] != ; z++);
int x = z / ;
int y = z % ;
for(i = ; i < ; i++)
{
int newx = x + dx[i];
int newy = y + dy[i];
int newz = * newx + newy;
if(newx >= && newx < && newy >= && newy < )
{
State& news = st[rear];
memcpy(news, s, sizeof(s));
news[z] = s[newz];
news[newz] = ;
if(try_to_insert(rear))    //注意这里的路径输出的方式
{
fa[rear] = frt;
switch(i)
{
case : dir[rear] = 'u'; break;
case : dir[rear] = 'd'; break;
case : dir[rear] = 'l'; break;
case : dir[rear] = 'r'; break;
default: break;
}
rear++;
}
}
}
frt++;
}
return ;
} void print(int i) //输出
{
if(fa[i] == -) return;
print(fa[i]);
cout<<dir[i];
} int main()
{
char c[];
int i, ret;
while(cin>>c[]>>c[]>>c[]>>c[]>>c[]>>c[]>>c[]>>c[]>>c[])
{
for(i = ; i < ; i++) st[][i] = c[i] == 'x' ? : (int)(c[i]-'');
memset(head, -, sizeof(head));
fa[] = -;
ret = bfs();
if(ret)
{
print(ret);
}
else cout<<"unsolvable";
cout<<endl;
}
return ;
}

HDU : 这道题时多组输入,所以不能向上面一样在线写,而是要从最终状态开始倒着把所有状态搜索一遍,之后只需要输入初始状态打表判断输出路径即可;

  学习到的知识有两个:bfs()路径查找类 + 康拓展开,路径的输出:

 /*************************************************************************
> File Name: search.cpp
> Author : PrayG
> Mail: 996930051@qq,com
> Created Time: 2016年07月20日 星期三 10时56分09秒
************************************************************************/ #include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<queue>
#include<algorithm>
#include<map>
#include<stack>
#include<set>
#include<cmath>
using namespace std;
const int maxn = ;
int fac[] = {,,,,,,,,,};
int dx[] = {,,-,},dy[] = {,,,-};//drul
char ind[] = "uldr";//与上面相反
string path[maxn];//记录路径
bool vis[maxn];
int aim = ;//123456780 的康拓展开 struct node
{
int s[]; //记录状态
int sit0;  //0 的位置
int val;   //康拓展开的值
string path;  // 路径
}; int cant(int s[])  //康拓展开
{
int code = ;
for(int i = ; i < ; i++)
{
int cnt = ;
for(int j= i+ ; j < ; j++)
{
if(s[i] > s[j])
{
cnt++;
}
}
code += fac[-i] * cnt;
}
return code;
} void bfs()
{
memset(vis,false,sizeof(vis));
queue<node> que;
node cnt1,cnt2;
for(int i = ; i < ;i++)
cnt1.s[i] = i+;
cnt1.s[] = ;
cnt1.sit0 = ;
//printf("aim = %d\n",aim);
cnt1.val = aim;
cnt1.path = "";
path[aim] = "";
que.push(cnt1);
while(!que.empty())
{
cnt1 = que.front();
que.pop();
int x = cnt1.sit0 / ;
int y = cnt1.sit0 % ;
for(int i = ; i < ; i++)
{
int nx = x + dx[i];
int ny = y + dy[i];
int nz = nx * + ny;
if(nx < || nx > || ny < || ny >)
continue;
cnt2 = cnt1;
cnt2.s[cnt1.sit0] = cnt2.s[nz];
cnt2.s[nz] = ;
cnt2.sit0 = nz;
cnt2.val = cant(cnt2.s);
if(!vis[cnt2.val])
{
vis[cnt2.val] = true;
cnt2.path = ind[i] + cnt1.path;
que.push(cnt2);
path[cnt2.val] = cnt2.path;
}
} }
} int main()
{
bfs();
char t;
while(cin >> t)
{
node st;
if(t == 'x'){
st.s[] = ;
st.sit0 = ;
}
else
st.s[] = t - '';
for(int i = ; i< ; i++)
{
cin >> t;
if(t == 'x')
{
st.s[i] = ;
st.sit0 = i;
}
else
st.s[i] = t -'';
}
st.val = cant(st.s);
if(vis[st.val])
{
cout << path[st.val] << endl;
}
else
cout << "unsolvable" << endl;
}
return ;
}
 
 

Eight hdu 1043 poj 1077的更多相关文章

  1. HDU 1043 & POJ 1077 Eight(康托展开+BFS+预处理)

    Eight Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 30176   Accepted: 13119   Special ...

  2. HDU 1043 & POJ 1077 Eight(康托展开+BFS | IDA*)

    Eight Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 30176   Accepted: 13119   Special ...

  3. Eight (HDU - 1043|POJ - 1077)(A* | 双向bfs+康拓展开)

    The 15-puzzle has been around for over 100 years; even if you don't know it by that name, you've see ...

  4. Eight POJ - 1077 HDU - 1043 八数码

    Eight POJ - 1077 HDU - 1043 八数码问题.用hash(康托展开)判重 bfs(TLE) #include<cstdio> #include<iostream ...

  5. HDU - 1043 - Eight / POJ - 1077 - Eight

    先上题目: Eight Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tota ...

  6. HDU 1403 Eight&POJ 1077(康拖,A* ,BFS,双广)

    Eight Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submis ...

  7. HDU 3695 / POJ 3987 Computer Virus on Planet Pandora(AC自动机)(2010 Asia Fuzhou Regional Contest)

    Description Aliens on planet Pandora also write computer programs like us. Their programs only consi ...

  8. hdu 2844 poj 1742 Coins

    hdu 2844 poj 1742 Coins 题目相同,但是时限不同,原本上面的多重背包我初始化为0,f[0] = 1;用位或进行优化,f[i]=1表示可以兑成i,0表示不能. 在poj上运行时间正 ...

  9. HDU 1043 八数码(八境界)

    看了这篇博客的讲解,挺不错的.http://www.cnblogs.com/goodness/archive/2010/05/04/1727141.html 判断无解的情况(写完七种境界才发现有直接判 ...

随机推荐

  1. Chrome扩展程序推荐

    Chrome扩展程序 AdBlock 印象笔记 网页截图:注释&录屏 油猴 zenmate-vpn sourcegraph 推荐网站

  2. Python: Json串反序列化为自定义类对象

    最近刚接触到python,就想到了如何反序列化json串.网上找了一下,大部分都是用json模块反序列化为python数据结构(字典和列表).如果对json模块不了解的参考菜鸟教程.然后我在此基础上将 ...

  3. maven跳过单元测试-maven.test.skip和skipTests的区别以及部分常用命令

    -DskipTests,不执行测试用例,但编译测试用例类生成相应的class文件至target/test-classes下. -Dmaven.test.skip=true,不执行测试用例,也不编译测试 ...

  4. MATLAB插值

    转自原文 MATLAB插值 插值问题 在应用领域中,由有限个已知数据点,构造一个解析表达式,由此计算数据点之间的函数值,称之为插值. 实例:海底探测问题 某公司用声纳对海底进行测试,在5×5海里的坐标 ...

  5. android:为TextView加入样式——下划线,颜色,设置链接样式及前背景色

    实现下划线及颜色设置: public class AtActivity extends Activity { LinearLayout ll;     /** Called when the acti ...

  6. Django关于图片验证码显示笔记

    .访问页面 /login/ - 内部需要创建一张图片,并且给用户返回 - 创建一个白板 Session存放验证码 .POST - 根据用户提交的数据与session里面比较 .登录界面 和 验证码 分 ...

  7. [JZOJ4272] [NOIP2015模拟10.28B组] 序章-弗兰德的秘密 解题报告(树形DP)

    Description 背景介绍弗兰德,我不知道这个地方对我意味着什么.这里是一切开始的地方.3年前,还是个什么都没见过的少年,来到弗兰德的树下,走进了封闭的密室,扭动的封尘已久机关,在石板上知道了这 ...

  8. vue1.0父子、兄弟间 通信案例

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  9. Goldengate参数规范

    1.    文档综述 1.1.  文档说明 本文档规定了在实施Goldengate时,各个进程需要配置的参数. 该参数模板适合于Goldengate11.2.1.0版本: **注:本文档为Golden ...

  10. core组件进阶

    访问图像像素 存储方式 BGR连续存储有助于提升图像扫描速度. isContinuous()判断是否是连续存储. 颜色空间缩减 仅用这些颜色中具有代表性的很小的部分,就足以达到同样的效果. 将现有颜色 ...