点分治真是一个好东西。可惜我不会

这种要求所有路经的题很可能是点分治。

然后我就不会了。。

既然要用点分治,就想,点分治有哪些优点?它可以\(O(nlogn)\)遍历分治树的所有子树。

那么现在的问题就是,如可快速(\(O(n)\)或O\((nlogn)\))求以一个点为根的时候,子树之间的贡献(当然还有根节点的)。

我们注意到一件事,就是一棵子树中一个点对其他子树的点产生贡献当且仅当这个点的颜色在它到根的路径上第一次出现(或者说只算上这些贡献答案正确),且贡献为以这个点为根的子树大小。(不考虑其它子树的颜色)

这个有什么用,我们可以遍历两遍子树,第一遍预处理出所有子树对其它子树的贡献(如上边一段所说把贡献统计),第二次遍历每一颗子树先把这颗树的贡献去掉,统计所有其它的树对这颗树的贡献。

那么具体该怎么做?

void calc(int u){
dfs1(u,0);
ans[u]+=sum;
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if(vis[v])continue;
cnt[a[u]]++;
sum-=size[v];color[a[u]]-=size[v];
change(v,u,-1);
cnt[a[u]]--;
tot=size[u]-size[v];
dfs2(v,u);
cnt[a[u]]++;
sum+=size[v];color[a[u]]+=size[v];
change(v,u,1);
cnt[a[u]]--;
}
clear(u,0);
}

首先dfs1是统计贡献的,用sum记录贡献和,color[i]记录第i种颜色的贡献。

然后根的答案就可以累加了。

那么如可判断一个颜色第一次出现?可以记录一个cnt[i]记录第i种颜色在到根的路径上出现多少次。当cnt[i]等于1的时候统计贡献。

然后

		cnt[a[u]]++;
sum-=size[v];color[a[u]]-=size[v];
change(v,u,-1);
cnt[a[u]]--;

用来消除子树贡献。dfs2统计其它子树对这颗子树的贡献。

void dfs2(int u,int f){
cnt[a[u]]++;
if(cnt[a[u]]==1){
sum-=color[a[u]];
num++;
}
ans[u]+=sum+num*tot;
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if(v==f||vis[v])continue;
dfs2(v,u);
}
if(cnt[a[u]]==1){
sum+=color[a[u]];
num--;
}
cnt[a[u]]--;
}

如果这颗子树中出现一个颜色,并且它是第一次出现,那么减去所有子树的color[a[u]],加上其它子树的节点总数,因为每一条到其它子树的路径都会产生贡献,这也是我们一开始不考虑贡献对其他子树影响的原因,因为遍历子树的时候会把这些重复的贡献减去。

更具体还是看代码。

// luogu-judger-enable-o2
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
#define int long long
const int N=101000;
int Cnt,head[N];
int g[N],size[N],cnt[N],a[N],sum,color[N],tot,num,root,all,vis[N],ans[N],n;
struct edge{
int to,nxt;
}e[N*2];
void add_edge(int u,int v){
Cnt++;
e[Cnt].nxt=head[u];
e[Cnt].to=v;
head[u]=Cnt;
}
int read(){
int sum=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){sum=sum*10+ch-'0';ch=getchar();}
return sum*f;
}
void getroot(int u,int f){
g[u]=0;size[u]=1;
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if(v==f||vis[v])continue;
getroot(v,u);
size[u]+=size[v];
g[u]=max(g[u],size[v]);
}
g[u]=max(g[u],all-size[u]);
if(g[u]<g[root])root=u;
}
void dfs1(int u,int f){
cnt[a[u]]++;
size[u]=1;
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if(v==f||vis[v])continue;
dfs1(v,u);
size[u]+=size[v];
}
if(cnt[a[u]]==1){
sum+=size[u];
color[a[u]]+=size[u];
}
cnt[a[u]]--;
}
void clear(int u,int f){
cnt[a[u]]++;
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if(v==f||vis[v])continue;
clear(v,u);
}
if(cnt[a[u]]==1){
sum-=size[u];
color[a[u]]-=size[u];
}
cnt[a[u]]--;
}
void dfs2(int u,int f){
cnt[a[u]]++;
if(cnt[a[u]]==1){
sum-=color[a[u]];
num++;
}
ans[u]+=sum+num*tot;
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if(v==f||vis[v])continue;
dfs2(v,u);
}
if(cnt[a[u]]==1){
sum+=color[a[u]];
num--;
}
cnt[a[u]]--;
}
void change(int u,int f,int k){
cnt[a[u]]++;
if(cnt[a[u]]==1){
sum+=k*size[u];color[a[u]]+=k*size[u];
}
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if(v==f||vis[v])continue;
change(v,u,k);
}
cnt[a[u]]--;
}
void calc(int u){
dfs1(u,0);
ans[u]+=sum;
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if(vis[v])continue;
cnt[a[u]]++;
sum-=size[v];color[a[u]]-=size[v];
change(v,u,-1);
cnt[a[u]]--;
tot=size[u]-size[v];
dfs2(v,u);
cnt[a[u]]++;
sum+=size[v];color[a[u]]+=size[v];
change(v,u,1);
cnt[a[u]]--;
}
clear(u,0);
}
void work(int u){
calc(u);
vis[u]=1;
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if(vis[v])continue;
root=0,all=size[v];
getroot(v,0);
work(root);
}
}
signed main(){
n=read();
for(int i=1;i<=n;i++)a[i]=read();
for(int i=1;i<n;i++){
int u=read(),v=read();
add_edge(u,v);add_edge(v,u);
}
g[0]=n+10;root=0;all=n;
getroot(1,0);work(root);
for(int i=1;i<=n;i++)printf("%lld\n",ans[i]);
return 0;
}

luogu P2664 树上游戏(点分治)的更多相关文章

  1. Luogu P2664 树上游戏 dfs+树上统计

    题目: P2664 树上游戏 分析: 本来是练习点分治的时候看到了这道题.无意中发现题解中有一种方法可以O(N)解决这道题,就去膜拜了一下. 这个方法是,假如对于某一种颜色,将所有这种颜色的点全部删去 ...

  2. [LuoGu]P2664 树上游戏

    Portal 这题真的好. 看到树上路径, 脑子里就要点分治 这一题对于每个点都要计算一遍, 如果暴算实在不好算, 这样我们就可以考虑算贡献. 直接计算每种颜色的贡献. 因为一条过重心的路径中, 可能 ...

  3. 洛谷P2664 树上游戏(点分治)

    题意 题目链接 Sol 神仙题..Orz yyb 考虑点分治,那么每次我们只需要统计以当前点为\(LCA\)的点对之间的贡献以及\(LCA\)到所有点的贡献. 一个很神仙的思路是,对于任意两个点对的路 ...

  4. 洛谷P2664 树上游戏——点分治

    原题链接 被点分治虐的心态爆炸了 题解 发现直接统计路径上的颜色数量很难,考虑转化一下统计方式.对于某一种颜色\(c\),它对一个点的贡献为从这个点出发且包含这种颜色的路径条数. 于是我们先点分一下, ...

  5. P2664 树上游戏

    P2664 树上游戏 https://www.luogu.org/problemnew/show/P2664 分析: 点分治. 首先关于答案的统计转化成计算每个颜色的贡献. 1.计算从根出发的路径的答 ...

  6. 洛谷 P2664 树上游戏 解题报告

    P2664 树上游戏 题目描述 \(\text{lrb}\)有一棵树,树的每个节点有个颜色.给一个长度为\(n\)的颜色序列,定义\(s(i,j)\) 为 \(i\) 到 \(j\) 的颜色数量.以及 ...

  7. 洛谷P2664 树上游戏(点分治)

    传送门 题解 因为一个sb错误调了一个晚上……鬼晓得我为什么$solve(rt)$会写成$solve(v)$啊!!!一个$O(logn)$被我硬生生写成$O(n)$了竟然还能过$5$个点……话说还一直 ...

  8. 洛谷P2664 树上游戏 【点分治 + 差分】

    题目 lrb有一棵树,树的每个节点有个颜色.给一个长度为n的颜色序列,定义s(i,j) 为i 到j 的颜色数量.以及 现在他想让你求出所有的sum[i] 输入格式 第一行为一个整数n,表示树节点的数量 ...

  9. 【洛谷P2664】 树上游戏 点分治

    code: #include <bits/stdc++.h> #define N 200009 #define ll long long #define setIO(s) freopen( ...

随机推荐

  1. 阿里logo库

    http://www.iconfont.cn/home/index?spm=a313x.7781069.1998910419.2

  2. 常用的GNOME Shell 扩展

    GNOME Shell(即GNOME 3)桌面环境最初进军Linux世界时,众多批评人士指出其灵活性有所欠缺.当初外观有所突破的GNOME确实会给生产效率带来一些影响,然而它多年来一直默默通过多种方式 ...

  3. input的radio根据value和name反向显示

    1.获取radio的值,是根据name设置一组单选框. 例如: <div id="sexBox"> <input type="radio" i ...

  4. kernel zram feature

    what is zram? Zram wiki zram zram(也称为 zRAM,先前称为 compcache)是 Linux 内核的一项功能,可提供虚拟内存压缩.zram 通过在 RAM 内的压 ...

  5. springMVC传递对象参数

    初学java,由于项目紧急,来不及仔细的研究,在传递参数时就老老实实的一个一个的采用@RequestParam注解方式传递,最近认真看了一下,发现java也具有类似Asp.net Mvc传递对象做参数 ...

  6. Qt编程—去掉标题栏和设置窗口透明用法

    学习Qt编程,有时候我们很想做出好看又比较炫的画面,这时就常用到qt上的一些技巧. 这里我以一个小例子来展示qt的这些技巧,此qt编程写的,如图:(去掉标题栏和设置窗口透明后) 代码实现部分: .h文 ...

  7. 【【henuacm2016级暑期训练】动态规划专题 D】Writing Code

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 二维费用背包. f[i][j][k] 前i个人,写了j行,bug不超过k的方案数. 可以把每个人看成是一个物品. 它可以无限拿.然后 ...

  8. 【codeforces 749D】Leaving Auction

    [题目链接]:http://codeforces.com/problemset/problem/749/D [题意] 有n个人在竞价; 按照时间的顺序给出n次竞价(可能有一些人没有参加竞价); 每次竞 ...

  9. Sublime 插件Pylinter could not automatically determined the path to lint.py

    本系列文章由 @yhl_leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/50618630 安装Sublime Te ...

  10. codeforces7D Palindrome Degree(manacher&amp;dp或Hsh&amp;dp)

    D. Palindrome Degree time limit per test 1 second memory limit per test 256 megabytes input standard ...