luogu P2664 树上游戏(点分治)
点分治真是一个好东西。可惜我不会
这种要求所有路经的题很可能是点分治。
然后我就不会了。。
既然要用点分治,就想,点分治有哪些优点?它可以\(O(nlogn)\)遍历分治树的所有子树。
那么现在的问题就是,如可快速(\(O(n)\)或O\((nlogn)\))求以一个点为根的时候,子树之间的贡献(当然还有根节点的)。
我们注意到一件事,就是一棵子树中一个点对其他子树的点产生贡献当且仅当这个点的颜色在它到根的路径上第一次出现(或者说只算上这些贡献答案正确),且贡献为以这个点为根的子树大小。(不考虑其它子树的颜色)
这个有什么用,我们可以遍历两遍子树,第一遍预处理出所有子树对其它子树的贡献(如上边一段所说把贡献统计),第二次遍历每一颗子树先把这颗树的贡献去掉,统计所有其它的树对这颗树的贡献。
那么具体该怎么做?
void calc(int u){
dfs1(u,0);
ans[u]+=sum;
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if(vis[v])continue;
cnt[a[u]]++;
sum-=size[v];color[a[u]]-=size[v];
change(v,u,-1);
cnt[a[u]]--;
tot=size[u]-size[v];
dfs2(v,u);
cnt[a[u]]++;
sum+=size[v];color[a[u]]+=size[v];
change(v,u,1);
cnt[a[u]]--;
}
clear(u,0);
}
首先dfs1是统计贡献的,用sum记录贡献和,color[i]记录第i种颜色的贡献。
然后根的答案就可以累加了。
那么如可判断一个颜色第一次出现?可以记录一个cnt[i]记录第i种颜色在到根的路径上出现多少次。当cnt[i]等于1的时候统计贡献。
然后
cnt[a[u]]++;
sum-=size[v];color[a[u]]-=size[v];
change(v,u,-1);
cnt[a[u]]--;
用来消除子树贡献。dfs2统计其它子树对这颗子树的贡献。
void dfs2(int u,int f){
cnt[a[u]]++;
if(cnt[a[u]]==1){
sum-=color[a[u]];
num++;
}
ans[u]+=sum+num*tot;
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if(v==f||vis[v])continue;
dfs2(v,u);
}
if(cnt[a[u]]==1){
sum+=color[a[u]];
num--;
}
cnt[a[u]]--;
}
如果这颗子树中出现一个颜色,并且它是第一次出现,那么减去所有子树的color[a[u]],加上其它子树的节点总数,因为每一条到其它子树的路径都会产生贡献,这也是我们一开始不考虑贡献对其他子树影响的原因,因为遍历子树的时候会把这些重复的贡献减去。
更具体还是看代码。
// luogu-judger-enable-o2
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
#define int long long
const int N=101000;
int Cnt,head[N];
int g[N],size[N],cnt[N],a[N],sum,color[N],tot,num,root,all,vis[N],ans[N],n;
struct edge{
int to,nxt;
}e[N*2];
void add_edge(int u,int v){
Cnt++;
e[Cnt].nxt=head[u];
e[Cnt].to=v;
head[u]=Cnt;
}
int read(){
int sum=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){sum=sum*10+ch-'0';ch=getchar();}
return sum*f;
}
void getroot(int u,int f){
g[u]=0;size[u]=1;
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if(v==f||vis[v])continue;
getroot(v,u);
size[u]+=size[v];
g[u]=max(g[u],size[v]);
}
g[u]=max(g[u],all-size[u]);
if(g[u]<g[root])root=u;
}
void dfs1(int u,int f){
cnt[a[u]]++;
size[u]=1;
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if(v==f||vis[v])continue;
dfs1(v,u);
size[u]+=size[v];
}
if(cnt[a[u]]==1){
sum+=size[u];
color[a[u]]+=size[u];
}
cnt[a[u]]--;
}
void clear(int u,int f){
cnt[a[u]]++;
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if(v==f||vis[v])continue;
clear(v,u);
}
if(cnt[a[u]]==1){
sum-=size[u];
color[a[u]]-=size[u];
}
cnt[a[u]]--;
}
void dfs2(int u,int f){
cnt[a[u]]++;
if(cnt[a[u]]==1){
sum-=color[a[u]];
num++;
}
ans[u]+=sum+num*tot;
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if(v==f||vis[v])continue;
dfs2(v,u);
}
if(cnt[a[u]]==1){
sum+=color[a[u]];
num--;
}
cnt[a[u]]--;
}
void change(int u,int f,int k){
cnt[a[u]]++;
if(cnt[a[u]]==1){
sum+=k*size[u];color[a[u]]+=k*size[u];
}
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if(v==f||vis[v])continue;
change(v,u,k);
}
cnt[a[u]]--;
}
void calc(int u){
dfs1(u,0);
ans[u]+=sum;
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if(vis[v])continue;
cnt[a[u]]++;
sum-=size[v];color[a[u]]-=size[v];
change(v,u,-1);
cnt[a[u]]--;
tot=size[u]-size[v];
dfs2(v,u);
cnt[a[u]]++;
sum+=size[v];color[a[u]]+=size[v];
change(v,u,1);
cnt[a[u]]--;
}
clear(u,0);
}
void work(int u){
calc(u);
vis[u]=1;
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if(vis[v])continue;
root=0,all=size[v];
getroot(v,0);
work(root);
}
}
signed main(){
n=read();
for(int i=1;i<=n;i++)a[i]=read();
for(int i=1;i<n;i++){
int u=read(),v=read();
add_edge(u,v);add_edge(v,u);
}
g[0]=n+10;root=0;all=n;
getroot(1,0);work(root);
for(int i=1;i<=n;i++)printf("%lld\n",ans[i]);
return 0;
}
luogu P2664 树上游戏(点分治)的更多相关文章
- Luogu P2664 树上游戏 dfs+树上统计
题目: P2664 树上游戏 分析: 本来是练习点分治的时候看到了这道题.无意中发现题解中有一种方法可以O(N)解决这道题,就去膜拜了一下. 这个方法是,假如对于某一种颜色,将所有这种颜色的点全部删去 ...
- [LuoGu]P2664 树上游戏
Portal 这题真的好. 看到树上路径, 脑子里就要点分治 这一题对于每个点都要计算一遍, 如果暴算实在不好算, 这样我们就可以考虑算贡献. 直接计算每种颜色的贡献. 因为一条过重心的路径中, 可能 ...
- 洛谷P2664 树上游戏(点分治)
题意 题目链接 Sol 神仙题..Orz yyb 考虑点分治,那么每次我们只需要统计以当前点为\(LCA\)的点对之间的贡献以及\(LCA\)到所有点的贡献. 一个很神仙的思路是,对于任意两个点对的路 ...
- 洛谷P2664 树上游戏——点分治
原题链接 被点分治虐的心态爆炸了 题解 发现直接统计路径上的颜色数量很难,考虑转化一下统计方式.对于某一种颜色\(c\),它对一个点的贡献为从这个点出发且包含这种颜色的路径条数. 于是我们先点分一下, ...
- P2664 树上游戏
P2664 树上游戏 https://www.luogu.org/problemnew/show/P2664 分析: 点分治. 首先关于答案的统计转化成计算每个颜色的贡献. 1.计算从根出发的路径的答 ...
- 洛谷 P2664 树上游戏 解题报告
P2664 树上游戏 题目描述 \(\text{lrb}\)有一棵树,树的每个节点有个颜色.给一个长度为\(n\)的颜色序列,定义\(s(i,j)\) 为 \(i\) 到 \(j\) 的颜色数量.以及 ...
- 洛谷P2664 树上游戏(点分治)
传送门 题解 因为一个sb错误调了一个晚上……鬼晓得我为什么$solve(rt)$会写成$solve(v)$啊!!!一个$O(logn)$被我硬生生写成$O(n)$了竟然还能过$5$个点……话说还一直 ...
- 洛谷P2664 树上游戏 【点分治 + 差分】
题目 lrb有一棵树,树的每个节点有个颜色.给一个长度为n的颜色序列,定义s(i,j) 为i 到j 的颜色数量.以及 现在他想让你求出所有的sum[i] 输入格式 第一行为一个整数n,表示树节点的数量 ...
- 【洛谷P2664】 树上游戏 点分治
code: #include <bits/stdc++.h> #define N 200009 #define ll long long #define setIO(s) freopen( ...
随机推荐
- 鼠标悬浮触发事件(onmouseover)实现
将鼠标移至(悬浮)到某个标签范围内触发事件或提示消息等效果实现的关键词为:onmouseover. 代码: <!DOCTYPE html> <html> <head> ...
- JS中的与冒号的作用、箭头函数相关的一道题
相关知识来自于一道题: 使用ES6的箭头函数语法可以直接省略 function 和 return 关键字,比如 function (){return 1;} 就可以简化成 () => 1 , 但 ...
- js 获取对象长度
获取对象的程度,可以这样获取: var myObj = {a:1,b:2,c:3} var arr = Object.keys(myObj);var len = arr.length console ...
- HDU 2256 Problem of Precision( 矩阵快速幂 )
链接:传送门 题意:求式子的值,并向下取整 思路: 然后使用矩阵快速幂进行求解 balabala:这道题主要是怎么将目标公式进行化简,化简到一个可以使用现有知识进行解决的一个过程!菜的扣脚...... ...
- 转载:CentOS查看本机公网IP命令
icanhazip.com 使你在任何地方知道你的公网IP地址 icanhazip.com是一个网址,你在浏览器中输入这个网址,你就能得到你的公网IP地址了. 我在Linux下一般使用curl ica ...
- -java转json hibernate懒加载造成的无限递归问题
1.在判断到底是谁维护关联关系时,可以通过查看外键,哪个实体类定义了外键,哪个类就负责维护关联关系. JoinColumn(name="pid") 2. 在保存数据时,总是先保存的 ...
- 电子签章盖章之jQuery插件jquery.zsign
简介: 使用jquery.zsign可以实现电子签章盖章效果,使用方便,只需提供自己的章图片.效果图如下: 页面引用: <link href=&quo ...
- 怎样制作C#安装程序
近期须要制作一个C#安装.在网上找了一些资料发现都不是非常完整,最后自己综合了一些资料,而且通过亲自检測,最后成功完毕C#打包成安装程序(打包成最简单的一种安装程序.假设须要更高的功能请自己在开发). ...
- [windows+cocos2dx]CCSprite精灵类
序言 回想cocos2dx,之前在mac+Xcode平台学习了一遍cocos2dx,一年时间不接触cocos了.一直在搞Unity3d.如今还是就之前所学温故温故,但不再用Xcode来写.用经常使用的 ...
- [iOS]字符串转字典
有点时候,我们json中有post请求的网址,这个时候我们须要把网址字符串转换成body体 字典 放在post请求中 NSString *body = [self.url_C_ component ...