Refer to the DecisionTree Python docs and DecisionTreeModel Python docs for more details on the API.

from pyspark.mllib.tree import DecisionTree, DecisionTreeModel
from pyspark.mllib.util import MLUtils # Load and parse the data file into an RDD of LabeledPoint.
data = MLUtils.loadLibSVMFile(sc, 'data/mllib/sample_libsvm_data.txt')
# Split the data into training and test sets (30% held out for testing)
(trainingData, testData) = data.randomSplit([0.7, 0.3]) # Train a DecisionTree model.
# Empty categoricalFeaturesInfo indicates all features are continuous.
model = DecisionTree.trainClassifier(trainingData, numClasses=2, categoricalFeaturesInfo={},
impurity='gini', maxDepth=5, maxBins=32) # Evaluate model on test instances and compute test error
predictions = model.predict(testData.map(lambda x: x.features))
labelsAndPredictions = testData.map(lambda lp: lp.label).zip(predictions)
testErr = labelsAndPredictions.filter(lambda (v, p): v != p).count() / float(testData.count())
print('Test Error = ' + str(testErr))
print('Learned classification tree model:')
print(model.toDebugString()) # Save and load model
model.save(sc, "target/tmp/myDecisionTreeClassificationModel")
sameModel = DecisionTreeModel.load(sc, "target/tmp/myDecisionTreeClassificationModel")
Find full example code at "examples/src/main/python/mllib/decision_tree_classification_example.py" in the Spark repo.

class pyspark.mllib.tree.DecisionTree[source]

Learning algorithm for a decision tree model for classification or regression.

New in version 1.1.0.

classmethod trainClassifier(datanumClassescategoricalFeaturesInfoimpurity='gini'maxDepth=5maxBins=32minInstancesPerNode=1minInfoGain=0.0)[source]

Train a decision tree model for classification.

Parameters:
  • data – Training data: RDD of LabeledPoint. Labels should take values {0, 1, ..., numClasses-1}.
  • numClasses – Number of classes for classification.
  • categoricalFeaturesInfo – Map storing arity of categorical features. An entry (n -> k) indicates that feature n is categorical with k categories indexed from 0: {0, 1, ..., k-1}.
  • impurity – Criterion used for information gain calculation. Supported values: “gini” or “entropy”. (default: “gini”)
  • maxDepth – Maximum depth of tree (e.g. depth 0 means 1 leaf node, depth 1 means 1 internal node + 2 leaf nodes). (default: 5)
  • maxBins – Number of bins used for finding splits at each node. (default: 32)
  • minInstancesPerNode – Minimum number of instances required at child nodes to create the parent split. (default: 1)
  • minInfoGain – Minimum info gain required to create a split. (default: 0.0)
Returns:

DecisionTreeModel.

Example usage:

>>> from numpy import array
>>> from pyspark.mllib.regression import LabeledPoint
>>> from pyspark.mllib.tree import DecisionTree
>>>
>>> data = [
... LabeledPoint(0.0, [0.0]),
... LabeledPoint(1.0, [1.0]),
... LabeledPoint(1.0, [2.0]),
... LabeledPoint(1.0, [3.0])
... ]
>>> model = DecisionTree.trainClassifier(sc.parallelize(data), 2, {})
>>> print(model)
DecisionTreeModel classifier of depth 1 with 3 nodes
>>> print(model.toDebugString())
DecisionTreeModel classifier of depth 1 with 3 nodes
If (feature 0 <= 0.0)
Predict: 0.0
Else (feature 0 > 0.0)
Predict: 1.0 >>> model.predict(array([1.0]))
1.0
>>> model.predict(array([0.0]))
0.0
>>> rdd = sc.parallelize([[1.0], [0.0]])
>>> model.predict(rdd).collect()
[1.0, 0.0]

摘自:https://spark.apache.org/docs/latest/api/python/pyspark.mllib.html#pyspark.mllib.tree.DecisionTree

python spark 决策树 入门demo的更多相关文章

  1. Spark快速入门 - Spark 1.6.0

    Spark快速入门 - Spark 1.6.0 转载请注明出处:http://www.cnblogs.com/BYRans/ 快速入门(Quick Start) 本文简单介绍了Spark的使用方式.首 ...

  2. Spark快速入门

    Spark 快速入门   本教程快速介绍了Spark的使用. 首先我们介绍了通过Spark 交互式shell调用API( Python或者scala代码),然后演示如何使用Java, Scala或者P ...

  3. spark streaming 入门例子

    spark streaming 入门例子: spark shell import org.apache.spark._ import org.apache.spark.streaming._ sc.g ...

  4. 转-Python自然语言处理入门

      Python自然语言处理入门 原文链接:http://python.jobbole.com/85094/ 分享到:20 本文由 伯乐在线 - Ree Ray 翻译,renlytime 校稿.未经许 ...

  5. Spark高速入门指南(Quick Start Spark)

    版权声明:本博客已经不再更新.请移步到Hadoop技术博客:https://www.iteblog.com https://blog.csdn.net/w397090770/article/detai ...

  6. [转] Spark快速入门指南 – Spark安装与基础使用

    [From] https://blog.csdn.net/w405722907/article/details/77943331 Spark快速入门指南 – Spark安装与基础使用 2017年09月 ...

  7. storm入门demo

    一.storm入门demo的介绍 storm的入门helloworld有2种方式,一种是本地的,另一种是远程. 本地实现: 本地写好demo之后,不用搭建storm集群,下载storm的相关jar包即 ...

  8. Python学习--01入门

    Python学习--01入门 Python是一种解释型.面向对象.动态数据类型的高级程序设计语言.和PHP一样,它是后端开发语言. 如果有C语言.PHP语言.JAVA语言等其中一种语言的基础,学习Py ...

  9. Python简单爬虫入门三

    我们继续研究BeautifulSoup分类打印输出 Python简单爬虫入门一 Python简单爬虫入门二 前两部主要讲述我们如何用BeautifulSoup怎去抓取网页信息以及获取相应的图片标题等信 ...

随机推荐

  1. @PathVariable注解的使用和@Requestparam

    一. @PathVariable @PathVariable这是一个路径映射格式的书写方式注解,在类映射路径的后加上/{对应方法参数中属性@PathVariable("code") ...

  2. Android Fragment与Activity交互的几种方式

    这里我不再详细介绍那写比较常规的方式,例如静态变量,静态方法,持久化,application全局变量,收发广播等等. 首先我们来介绍使用Handler来实现Fragment与Activity 的交互. ...

  3. Python3编写自动签到服务程序

    公司加班的餐补需要登录网站签到领取,有时候会忘记,于是自己用Python写了小程序来自动签到.刚开始只是做了自己用,直接写的黑框程序,后来给同事用,就打包成exe.再后来有人说要写成window服务会 ...

  4. selenium有多个窗口时操作某个窗口的内容

    这个页面点击html/css后会弹出一个新的窗口,此时要操作新的窗口的内容,使用switchTo 跳转代码 driver.get("https://www.imooc.com"); ...

  5. asp.net mvc 学习步骤

    入门篇(一) ASP.NET MVC案例教程(基于ASP.NET MVC beta) http://www.cnblogs.com/leoo2sk/archive/2008/10/27/1320285 ...

  6. window path 的基本配置

    %JAVA_HOME%\bin;%SystemRoot%\system32;%SystemRoot%;%SystemRoot%\System32\Wbem;%SYSTEMROOT%\System32\ ...

  7. javeee 字节Buffered

    package Zy; import java.io.BufferedInputStream; import java.io.BufferedOutputStream; import java.io. ...

  8. Redis-RDB持久化设置

    1.如何配置RDB持久化机制redis.conf文件,也就是/etc/redis/6379.conf,去配置持久化 save 60 1000 每隔60s,如果有超过1000个key发生了变更,那么就生 ...

  9. 什么是Capability

    desired capability的功能是配置Appium会话.他们告诉Appium服务器您想要自动化的平台和应用程序. Desired Capabilities是一组设置的键值对的集合,其中键对应 ...

  10. eas之kingdeeUtils

        import java.sql.ResultSetMetaData;     import java.sql.SQLException;     import java.util.ArrayL ...