紫书 习题 11-3 UVa 820 (最大流裸题)
注意这道题是双向边, 然后直接套模板就ok了。
#include<cstdio>
#include<algorithm>
#include<vector>
#include<queue>
#include<cstring>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
using namespace std;
const int MAXN = 112;
struct Edge
{
int from, to, cap, flow;
Edge(int from = 0,int to = 0,int cap = 0,int flow = 0):from(from),to(to),cap(cap),flow(flow){}
};
vector<Edge> edges;
vector<int> g[MAXN];
int h[MAXN], cur[MAXN], s, t, n, m;
void AddEdge(int from, int to, int cap)
{
edges.push_back(Edge(from, to, cap, 0));
edges.push_back(Edge(to, from, 0, 0));
g[from].push_back(edges.size() - 2);
g[to].push_back(edges.size() - 1);
}
bool bfs()
{
memset(h, 0, sizeof(h));
queue<int> q;
q.push(s);
h[s] = 1;
while(!q.empty())
{
int x = q.front(); q.pop();
REP(i, 0, g[x].size())
{
Edge& e = edges[g[x][i]];
if(e.cap > e.flow && !h[e.to])
{
h[e.to] = h[x] + 1;
q.push(e.to);
}
}
}
return h[t];
}
int dfs(int x, int a)
{
if(x == t || a == 0) return a;
int flow = 0, f;
for(int i = cur[x]; i < g[x].size(); i++)
{
Edge& e = edges[g[x][i]];
if(h[x] + 1 == h[e.to] && (f = dfs(e.to, min(a, e.cap - e.flow))) > 0)
{
e.flow += f;
edges[g[x][i] ^ 1].flow -= f;
flow += f;
if((a -= f) == 0) break;
}
}
return flow;
}
int solve()
{
int ret = 0;
while(bfs()) memset(cur, 0, sizeof(cur)), ret += dfs(s, 1e9);
return ret;
}
int main()
{
int kase = 0;
while(~scanf("%d", &n) && n)
{
REP(i, 1, n + 1) g[i].clear();
edges.clear();
scanf("%d%d%d", &s, &t, &m);
while(m--)
{
int u, v, f;
scanf("%d%d%d", &u, &v, &f);
AddEdge(u, v, f);
AddEdge(v, u, f);
}
printf("Network %d\nThe bandwidth is %d.\n\n", ++kase, solve());
}
return 0;
}
紫书 习题 11-3 UVa 820 (最大流裸题)的更多相关文章
- 紫书 习题 11-9 UVa 12549 (二分图最小点覆盖)
用到了二分图的一些性质, 最大匹配数=最小点覆盖 貌似在白书上有讲 还不是很懂, 自己看着别人的博客用网络流写了一遍 反正以后学白书应该会系统学二分图的,紫书上没讲深. 目前就这样吧. #includ ...
- 紫书 习题 11-8 UVa 1663 (最大流求二分图最大基数匹配)
很奇怪, 看到网上用的都是匈牙利算法求最大基数匹配 紫书上压根没讲这个算法, 而是用最大流求的. 难道是因为第一个人用匈牙利算法然后其他所有的博客都是看这个博客的吗? 很有可能-- 回归正题. 题目中 ...
- 紫书 习题8-12 UVa 1153(贪心)
本来以为这道题是考不相交区间, 结果还专门复习了一遍前面写的, 然后发现这道题的区间是不是 固定的, 是在一个范围内"滑动的", 只要右端点不超过截止时间就ok. 然后我就先考虑有 ...
- 紫书 习题8-7 UVa 11925(构造法, 不需逆向)
这道题的意思紫书上是错误的-- 难怪一开始我非常奇怪为什么第二个样例输出的是2, 按照紫书上的意思应该是22 然后就不管了,先写, 然后就WA了. 然后看了https://blog.csdn.net/ ...
- 紫书 习题 8-20 UVa 1620 (找规律+求逆序对)
这道题看了半天没看出什么规律, 然后看到别人的博客, 结论是当n为奇数且逆序数为奇数的时候 无解, 否则有解.但是没有给出证明, 在网上也找到详细的证明--我也不知道是为什么-- 求逆序对有两种方法, ...
- 紫书 习题 11-10 UVa 12264 (二分答案+最大流)
书上写的是UVa 12011, 实际上是 12264 参考了https://blog.csdn.net/xl2015190026/article/details/51902823 这道题就是求出一种最 ...
- UVA 1594 Ducci Sequence(紫书习题5-2 简单模拟题)
A Ducci sequence is a sequence of n-tuples of integers. Given an n-tuple of integers (a1, a2, · · · ...
- 紫书 习题7-8 UVa 12107 (IDA*)
参考了这哥们的博客 https://blog.csdn.net/hyqsblog/article/details/46980287 (1)atoi可以char数组转int, 头文件 cstdlib ...
- 紫书 习题 11-17 UVa 1670 (图论构造)
一开始要符合题目条件, 那么肯定没有任何一个点是孤立的, 也就是说没有点的度数是1 所以我就想让度数是1的叶子节点相互连起来.然后WA 然后看这哥们的博客 https://blog.csdn.net/ ...
随机推荐
- JAVA导出csv出现0.00E+00
导出csv出现 0.00E+00的问题,打印其值为0E-8:这是因为数据表中无对应数据(decimal),查询结果则为 0e-8. 出现的字段是多个字段相加产生的和,所以这里调用了一个相加的方法.在相 ...
- 前端的标配:npm是什么及其安装(含cnpm)
前端的标配:npm是什么及其安装 一:npm是什么及其来源 参考来源:npm是干什么的 总结:不需要去相关的网站下载依赖,用一个工具把这些依赖集中起来管理 NPM 的思路大概是这样的: 1)买个服务器 ...
- 洛谷 P3079 [USACO13MAR]农场的画Farm Painting
P3079 [USACO13MAR]农场的画Farm Painting 题目描述 After several harsh winters, Farmer John has decided it is ...
- stl里面stack的注意事项
1. pop是不返回元素的.因为不能返回引用,只能返回实例.而这个实例是在函数里面初始化的,所以必须在外面再赋值和初始化.而如果实例复制失败,会产生丢失. 2. 而top是可以返回引用的.实际上,返回 ...
- JSON数据的生成与解析
JSON数据的生成与解析.首先先到网上下载一个json jar包,我用的是org.json 演示样例代码: package json; import org.json.JSONArray; impor ...
- leetcode第一刷_Subsets II
要求子集,有很现成的方法.N个数.子集的个数是2^N.每一个元素都有在集合中和不在集合中两种状态,这些状态用[0,pow(2,N)]中每一个数来穷举,假设这个数中的第i位为1,说明当前集合中包括源数组 ...
- Ubuntu 16.04 安装 Open Jdk
sudo add-apt-repository ppa:openjdk-r/ppa sudo apt-get update sudo apt-get install openjdk-7-jdk
- JAVA设计模式之【建造者模式】
建造者模式 建造者模式为客户端返回的不是一个简单的产品,而是一个由多个部件组成的复杂产品 角色 Builder抽象建造者 buildPartX getResult ConcreteBuilder具体建 ...
- linux 下的两种软件安装方式 —— 源码(编译、安装),编译好的二进制(直接安装)
我们以 GPG(加密工具)为例来说明两种安装方式的区别: 源码(Source code releases,名称中则会含有src等说明信息,tarball:source),先编译再安装 GPU 的源码地 ...
- [JZOJ 5912] [NOIP2018模拟10.18] VanUSee 解题报告 (KMP+博弈)
题目链接: https://jzoj.net/senior/#contest/show/2530/2 题目: 众所周知,cqf童鞋对哲学有着深入的理解和认识,并常常将哲学思想应用在实际生活中,例如锻炼 ...