【BZOJ 1150】[CTSC2007]数据备份Backup
【链接】 我是链接,点我呀:)
【题意】
在这里输入题意
【题解】
选择的连接肯定是相邻的点对。
那么我们处理出来长度为n-1的数组a
其中a[i-1] = dis[i]-dis[i-1]
那么问题就转化成在a数组中取出不相邻的k个数字。
这k个数字的和要求最小。
那么我们把每个数字都加入到堆中去。
然后对于k个数字。
每次取出堆中的最小值x
累加答案
但是这样做可能不是正确的。
因为可能选择x-1,x+1这两个点比单独选择一个点来得更优一些。
(如果你发现选x不是最优的->不选x->那么肯定吧x-1和x+1都选了更好
因此我们得给程序一个"反悔"的机会。
怎么给呢?
我们可以把x-1,x+1两个点的权值和减去x的权值和->temp。
然后加入到堆中去。
然后把x-1,x+1这两个点删掉。
x这个点的权值设置为刚才提到的temp
(这里要注意的一个思想就是,把x-1,x,x+1看成是一个整体,
这样下次如果再选这个x,就表示x不选了而把x-1,x+1选上。
->累加答案
这时仍然把x看成是一个点。
把它左边(此时是x-2)右边(x+2)的点删掉.
然后把a[x-2]+a[x+2]-a[x]再加入到堆中
重复上述步骤就好了
(这个时候-a[x]其实就是把那个"整体"里面选的变成不选,不选的变成选的了
(只有这样,x-2和x+2才能够被选中
(而且x这个整体里面会发现选中的点的个数总是比没选中的点个数多恰好1,所以再把x-2,x+2加上,刚好只会增加一个选择的点
我们每一次取出答案。
其实都只会让选中的点的个数递增1
所以堆中的每个元素其实对应的是,再多选一个点的话。
增加的代价是多少。
而我们每次选的都是最小的代价。
因此贪心的策略是正确的。
【代码】
/**************************************************************
Problem: 1150
User: chengchunyang
Language: C++
Result: Accepted
Time:696 ms
Memory:5260 kb
****************************************************************/
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int N = 1e5;
const int INF = 1e9+10;
int n,k;
int dis[N+10],a[N+10],L[N+10],R[N+10];
priority_queue<pair<ll,int>,vector<pair<ll,int> >,greater<pair<ll,int> > >pq;
bool vis[N+10];
int main()
{
scanf("%d%d",&n,&k);
for (int i = 1;i <= n;i++) scanf("%d",&dis[i]);
for (int i = 2;i <= n;i++) a[i-1] = dis[i]-dis[i-1];
n--;
a[0] = INF,a[n+1] = INF;
for (int i = 0;i <= n+1;i++) L[i] = i-1,R[i] = i+1;
for (int i = 1;i <= n;i++) pq.push(make_pair(a[i],i));
ll ans = 0;
for (int i = 1;i <= k;i++){
pair<ll,int> x;
do{
x = pq.top();pq.pop();
}while (vis[x.second]);
int id = x.second;
ans+=a[id];
a[id] = a[L[id]]+a[R[id]]-a[id];
pq.push(make_pair(a[id],id));
vis[L[id]] = vis[R[id]] = 1;
R[L[L[id]]] = id;
L[R[R[id]]] = id;
L[id] = L[L[id]];
R[id] = R[R[id]];
}
printf("%lld\n",ans);
return 0;
}
【BZOJ 1150】[CTSC2007]数据备份Backup的更多相关文章
- 【链表】bzoj 1150: [CTSC2007]数据备份Backup
1150: [CTSC2007]数据备份Backup Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1136 Solved: 458[Submit] ...
- [BZOJ 1150] [CTSC2007] 数据备份Backup 【贪心 + 链表】
题目链接:BZOJ - 1150 题目分析 可以看出,我们选的 k 条边一定是相邻两点之间的线段.我们可以将每条边看成一个点,那么我们就是要在 n-1 个点中选出互不相邻的 k 个,使它们的和最小. ...
- bzoj 1150: [CTSC2007]数据备份Backup
Description 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味 的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家 ...
- BZOJ 1150 [CTSC2007]数据备份Backup(贪心+优先队列)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1150 [题目大意] 给出n个数,请你挑出k对(每个数不可重复选取),使得他们差的绝对值 ...
- BZOJ 1150 CTSC2007 数据备份Backup 堆+馋
标题效果:给定一个长度n−1n-1的序列,要求选出kk个不相邻的数使得和最小 费用流显然能跑.并且显然过不去- - 考虑用堆模拟费用流 一个错误的贪心是每次取最小.这样显然过不去例子 我们把[每次取最 ...
- bzoj 1150: [CTSC2007]数据备份Backup【链表+堆】
参考:http://blog.csdn.net/Regina8023/article/details/44158947 神奇的做法.题意相当于若干个数取不相邻的k个使最小.先把数组差分,len表示这段 ...
- 【BZOJ 1150】 1150: [CTSC2007]数据备份Backup (贪心+优先队列+双向链表)
1150: [CTSC2007]数据备份Backup Description 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味 的,因此你想设 ...
- 1150: [CTSC2007]数据备份Backup
1150: [CTSC2007]数据备份Backup https://lydsy.com/JudgeOnline/problem.php?id=1150 分析: 堆+贪心. 每次选最小的并一定是最优的 ...
- bzoj1150 [CTSC2007]数据备份Backup 双向链表+堆
[CTSC2007]数据备份Backup Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2727 Solved: 1099[Submit][Stat ...
- 【BZOJ1150】[CTSC2007]数据备份Backup 双向链表+堆(模拟费用流)
[BZOJ1150][CTSC2007]数据备份Backup Description 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此 ...
随机推荐
- [Linux C]系统调用(system call)和库函数调用(Library functions)
Linux 下对文件操作有两种方式:系统调用(system call)和库函数调用(Library functions).系统调用实际上就是指最底层的一个调用,在 linux 程序设计里面就是底层 调 ...
- u-boot启动代码start.S详解
(1)定义入口.由于一个可执行的Image必须有一个入口点,并且只能有一个全局入口,通常这个入口放在ROM(Flash)的0x0地址,因此,必须通知编译器以使其知道这个入口,该工作可通过修改连接器脚本 ...
- JS中的五种去重方法
JS中的五种去重方法 第一种方法: 第二种方法: 第三种方法: 第四种方法: 第五种方法:优化遍历数组法 思路:获取没重复的最右一值放入新数组 * 方法的实现代码相当酷炫,* 实现思路:获取没重复的 ...
- 一行代码解决IE兼容性问题
在网站开发中不免因为各种兼容问题苦恼,针对兼容问题,其实IE给出了解决方案Google也给出了解决方案百度也应用了这种方案去解决IE的兼容问题 百度源代码如下 <!Doctype html> ...
- Mybatis 中 foreach collection 的三种用法
foreach的主要用在构建in条件中,它可以在SQL语句中进行迭代一个集合. foreach元素的属性主要有 item,index,collection,open,separator,close. ...
- 【codeforces 767E】Change-free
[题目链接]:http://codeforces.com/problemset/problem/767/E [题意] 你有m个1元硬币和无限张100元纸币; 你在第i天,需要花费ci元; 同时在第i天 ...
- ZJU 2605 Under Control
Under Control Time Limit: 2000ms Memory Limit: 65536KB This problem will be judged on ZJU. Original ...
- 洛谷—— P1260 工程规划
https://www.luogu.org/problem/show?pid=1260 题目描述 造一幢大楼是一项艰巨的工程,它是由n个子任务构成的,给它们分别编号1,2,…,n(5≤n≤1000). ...
- 洛谷 P1490 买蛋糕
P1490 买蛋糕 题目描述 野猫过生日,大家当然会送礼物了(咳咳,没送礼物的同志注意了哈!!),由于不知道送什么好,又考虑到实用性等其他问题,大家决定合伙给野猫买一个生日蛋糕.大家不知道最后要买的蛋 ...
- oauth2.0里回调地址返回code中如何让code不显示在URL里?
背景: 最近在调用对方提供的oauth2.0接口的时候,返回code在URL显示,但是会影响到本系统调用其他的菜单项的操作,所以想把返回的code值去掉. 解决办法: 想了各种解决办法,目前把 ...