BZOJ 2683 简单题 cdq分治+树状数组
题意:链接
**方法:**cdq分治+树状数组
解析:
首先对于这道题,看了范围之后。二维的数据结构是显然不能过的。于是我们可能会考虑把一维排序之后还有一位上数据结构什么的,然而cdq分治却可以非常好的体现它的作用。
首先,对于每个询问求和,显然是x在它左边的而且出现时间在它之前的全部的change对他可能会有影响。
我们依照x第一关键字,y第二关键字,操作第三关键字来排序全部的询问。然后在cdq的时候,每次递归处理左半区间,依照x动态的将y这一列的值加到树状数组里。来更新右半边的全部询问,注意这里的树状数组是须要清的,也就是每次cdq都是採用不同的树状数组。
另:这题神坑。数组开小不是RE而是WA
数组范围是要开到200000*4的,由于对于每个1操作。是一个操作,而2操作依据容斥原理,是4个操作。
所以复杂度大概是多少呢O(nlog^2(n))cdq+树状数组。n<=800000
代码:
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 800010
#define Q q[tot]
using namespace std;
struct node
{
int opt,x,y,A,no,belong;
}q[N],nq[N];
int n;
int jd,tot,T;
int ans[N];
int c[N];
int lowbit(int x){return x&(-x);}
int getsum(int x){int ret=0;while(x){ret+=c[x],x-=lowbit(x);}return ret;}
void update(int x,int v){while(x<=n){c[x]+=v;x+=lowbit(x);}}
int cmp(node a,node b)
{
if(a.x==b.x&&a.y==b.y)return a.opt<b.opt;
if(a.x==b.x)return a.y<b.y;
return a.x<b.x;
}
void sov(int l,int r)
{
if(l==r)return;
int mid=(l+r)>>1,l1=l,l2=mid+1;
for(int i=l;i<=r;i++)
{
if(q[i].no<=mid&&q[i].opt==1)update(q[i].y,q[i].A);
if(q[i].no>mid&&q[i].opt==2)ans[q[i].belong]+=getsum(q[i].y);
}
for(int i=l;i<=r;i++)
{
if(q[i].no<=mid&&q[i].opt==1)update(q[i].y,-q[i].A);
}
l1=l,l2=mid+1;
for(int i=l;i<=r;i++){if(q[i].no<=mid)nq[l1++]=q[i];else nq[l2++]=q[i];}
for(int i=l;i<=r;i++)q[i]=nq[i];
sov(l,mid),sov(mid+1,r);
}
int main()
{
scanf("%d",&n);
while(scanf("%d",&jd)&&jd^3)
{
if(jd==1){int x,y,a;scanf("%d%d%d",&x,&y,&a);q[++tot].opt=1,Q.x=x,Q.y=y,Q.A=a,Q.no=tot;}
else
{
int x1,x2,y1,y2;
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
q[++tot].opt=2,Q.x=x1-1,Q.y=y1-1,Q.A=1,Q.no=tot,Q.belong=++T;
q[++tot].opt=2,Q.x=x1-1,Q.y=y2,Q.A=-1,Q.no=tot,Q.belong=T;
q[++tot].opt=2,Q.x=x2,Q.y=y1-1,Q.A=-1,Q.no=tot,Q.belong=T;
q[++tot].opt=2,Q.x=x2,Q.y=y2,Q.A=1,Q.no=tot,Q.belong=T;
}
}
sort(q+1,q+1+tot,cmp);
sov(1,tot);
for(int i=1;i<=T;i++)printf("%d\n",ans[i]);
}
BZOJ 2683 简单题 cdq分治+树状数组的更多相关文章
- BZOJ2683: 简单题(cdq分治 树状数组)
Time Limit: 50 Sec Memory Limit: 128 MBSubmit: 2142 Solved: 874[Submit][Status][Discuss] Descripti ...
- 【bzoj1176】[Balkan2007]Mokia/【bzoj2683】简单题 CDQ分治+树状数组
bzoj1176 题目描述 维护一个W*W的矩阵,初始值均为S(题目描述有误,这里的S没有任何作用!).每次操作可以增加某格子的权值,或询问某子矩阵的总权值.修改操作数M<=160000,询问数 ...
- BZOJ 2683: 简单题(CDQ 分治)
题面 Time Limit: 50 Sec Memory Limit: 128 MB Description 你有一个N*N的棋盘,每个格子内有一个整数,初始时的时候全部为0,现在需要维护两种操作: ...
- BZOJ 2683 简单题 ——CDQ分治
[题目分析] 感觉CDQ分治和整体二分有着很本质的区别. 为什么还有许多人把他们放在一起,也许是因为代码很像吧. CDQ分治最重要的是加入了时间对答案的影响,x,y,t三个条件. 排序解决了x ,分治 ...
- BZOJ 1176: [Balkan2007]Mokia( CDQ分治 + 树状数组 )
考虑cdq分治, 对于[l, r)递归[l, m), [m, r); 然后计算[l, m)的操作对[m, r)中询问的影响就可以了. 具体就是差分答案+排序+离散化然后树状数组维护.操作数为M的话时间 ...
- BZOJ 2683: 简单题 [CDQ分治]
同上题 那你为什么又发一个? 因为我用另一种写法又写了一遍... 不用排序,$CDQ$分治的时候归并排序 快了1000ms... #include <iostream> #include ...
- BZOJ 1176 Mokia CDQ分治+树状数组
1176: [Balkan2007]Mokia Time Limit: 30 Sec Memory Limit: 162 MBSubmit: 1854 Solved: 821[Submit][St ...
- 【BZOJ4553】[Tjoi2016&Heoi2016]序列 cdq分治+树状数组
[BZOJ4553][Tjoi2016&Heoi2016]序列 Description 佳媛姐姐过生日的时候,她的小伙伴从某宝上买了一个有趣的玩具送给他.玩具上有一个数列,数列中某些项的值可能 ...
- 【bzoj3262】陌上花开 CDQ分治+树状数组
题目描述 有n朵花,每朵花有三个属性:花形(s).颜色(c).气味(m),又三个整数表示.现要对每朵花评级,一朵花的级别是它拥有的美丽能超过的花的数量.定义一朵花A比另一朵花B要美丽,当且仅当Sa&g ...
随机推荐
- koa,express,node 通用方法连接MySQL
这个教程不管node,express,koa都可以用下面方法连接,这里用koa做个参考 这个教程的源码地址: https://github.com/xiaqijian/... 新建文件目录,我是这样子 ...
- MyEclipse 设置JSP,HTML的默认打开方式,避免出现打开后上面出现浏览器
1. 2. 3. jsp的设置一样,这样myeclipse打开jsp就不会出现上面的浏览器了
- ASP.NET-HTTP响应标头
Reponse Headers 理论上所有的响应头信息都应该是回应请求头的.但是服务端为了效率,安全,还有其他方面的考虑,会添加相对应的响应头信息,从上图可以看到: Cache-Control:mus ...
- n个骰子,和为x的概率分别是多少
开始我居然又没有想出来.. 还是看了解法.开始的时候,一直想的是用概率,百分比来求,后来才发现,用次数来求,最后除一下,更近清晰. 方法,可以是递归,每次多一个骰子的时候,次数分别加上个数以及上一次i ...
- HDU 4339 Contest 4
树状数组,主要是抓住要求连续1的个数.这样,初始时,相同的加1,不同的加0. 查询时,用二分搜索右边界.就是比较当前mid-l+1的值与他们之间1的个数(这可以通过树状数组求区间和得出),记录右边界即 ...
- POJ 2888
思路挺清晰的.不过,我就是WA.不清楚为什么,很多数据都过了. 其实,一个置换后若有循环节个数为K,则N必定可以除以尽K.而K正好可以看成一个环.为什么呢?看前K个珠子,就是一个环,而后面的若干个K个 ...
- Google翻译PDF文档
Google翻译PDF文档 翻译软件虽多如牛毛,但有关整段/全文翻译,堪用的软件极少, 涉及专业技术的文献.胜任翻译工作的人力稀缺.少不了project师讴心沥血. 由于多是PDF格式.即使要翻译个概 ...
- PC端 java 开发蓝牙所遇到的问题
由于项目的原因.要在电脑上开发一个通过蓝牙传送数据的client.我採用的是JAVA,JSME开发. client:去搜素蓝牙信号,然后找到对应的蓝牙信号进行连接. 服务端:client须要进行连接的 ...
- linux定时备份mysql数据库文件
1.设定定时器:终端敲入:crontab -e命令 2,然后写入 00 23 * * * /home/db_bak_file/dbbak.sh >>/home/db_bak_fil ...
- php利用href进行页面传值的正确姿势
首先在a.php中 <?php $a = "world"; echo "<a href='b.php?m=$a'>删除</a>"; ...