【Unity】贝塞尔曲线关于点、长度、切线计算在 Unity中的C#实现
原文:【Unity】贝塞尔曲线关于点、长度、切线计算在 Unity中的C#实现
写在前面
最近给项目做了个路径编辑,基本思路是满足几个基本需求:
【额外说明】其实本篇和这个没关系,可以跳过“写在前面”这部分,跨到正文部分
编辑时:
① 随意增减、插入、删除路点,只要路点数量大于1,绘制曲线,曲线必定经过路点。
② 调整路点的Forward方向,控制曲线的入线切线方向、出线切线方向。这样可以通过旋转直接调整曲线形状。
③ 控制Forward方向的基础上,增添描述切线“强度”的变量,来进一步控制曲线的形状。
④ 可以指定每段曲线的逻辑长度,程序提供一个曲线近似长度帮助确定逻辑长度。
⑤ 导出曲线的数据。
运行时,可以根绝数据:
⑥ 对路点进行从0开始的编号,使用0.01~0.99来描述在某段曲线上的位置(逻辑上的),然后转化成为实际的坐标。
⑦ 可以获得在曲线上任意一点的切线方向。
正文
从路点、路点forward到三阶贝塞尔曲线的四个点
每两个路点作为三阶贝塞尔曲线的起点(第0个点P0)和终点(第3个点P3)。
起点路点的Forward方向乘以“强度”的变量,再加上起点坐标,作为第1个点P1。
起点路点的Forward反方向乘以“强度”的变量,再加上起点坐标,作为第2个点P2。
得到 p0~p4这四个点之后,即可使用三阶贝塞尔曲线的相关公式了
绘制贝塞尔曲线,图中红色线条部分
三阶贝塞尔曲线线上某点坐标(Unity & C#)
三阶贝塞尔曲线公式(来自百度百科)
形参中的 t, p0, p1, p2, p3 分别对应公式中的 t 以及 p0~p3
public Vector3 BezierPoint(float t, Vector3 p0, Vector3 p1, Vector3 p2, Vector3 p3)
{
float u = 1 - t;
float tt = t * t;
float uu = u * u;
float uuu = uu * u;
float ttt = tt * t;
Vector3 p = uuu * p0;
p += 3 * uu * t * p1;
p += 3 * u * tt * p2;
p += ttt * p3;
return p;
}
三阶贝塞尔曲线的近似长度(Unity & C#)
计算长度的思路:
在贝塞尔曲线上取n个点,计算点之间的直线长度,进行加和,从而取得一个曲线的近似长度。取点越多这个长度越趋向于精确。
形参中的p0, p1, p2, p3 分别对应公式中的 p0~p3。pointCount代表取点个数,默认30。
public float BezierLength(Vector3 p0, Vector3 p1, Vector3 p2, Vector3 p3, int pointCount = 30)
{
if (pointCount < 2)
{
return 0;
}
//取点 默认 30个
float length = 0.0f;
Vector3 lastPoint = BezierPoint(0.0f / (float)pointCount, p0, p1, p2, p3);
for (int i = 1; i <= pointCount; i++)
{
Vector3 point = BezierPoint((float)i/(float)pointCount, p0, p1, p2, p3);
length += Vector3.Distance(point, lastPoint);
lastPoint = point;
}
return length;
}
三阶贝塞尔曲线线上某点的切线(Unity & C#)
在已知贝塞尔曲线表达式的情况下,想要知道某点的切线,对曲线求导。
可得:
整理后可得
整体公式构成只有p0~p3 以及 t 和 (1-t),为了表达式更直接,不进行进一步的整理。
所以得到下面的代码
形参中的 t, p0, p1, p2, p3 分别对应公式中的 t 以及 p0~p3
public Vector3 BezierTangent(float t, Vector3 p0, Vector3 p1, Vector3 p2, Vector3 p3)
{
float u = 1 - t;
float uu = u * u;
float tu = t * u;
float tt = t * t;
Vector3 P = p0 * 3 * uu * (-1.0f);
P += p1 * 3 * (uu - 2 * tu);
P += p2 * 3 * (2 * tu - tt);
P += p3 * 3 * tt;
//返回单位向量
return P.normalized;
}
写在后面
主要参照:
Unity游戏中使用贝塞尔曲线
求二次、三次贝塞尔曲线的某个时间的位置及切线方向
转载请注明,出自喵喵丸的博客 (http://blog.csdn.net/u011643833/article/details/78540554)
【Unity】贝塞尔曲线关于点、长度、切线计算在 Unity中的C#实现的更多相关文章
- NGUI研究院之在Unity中使用贝塞尔曲线(六)[转]
鼎鼎大名的贝塞尔曲线相信大家都耳熟能详.这两天因为工作的原因需要将贝塞尔曲线加在工程中,那么MOMO迅速的研究了一下成果就分享给大家了哦.贝塞尔曲线的原理是由两个点构成的任意角度的曲线,这两个点一个是 ...
- 在Unity中使用贝塞尔曲线(转)
鼎鼎大名的贝塞尔曲线相信大家都耳熟能详.这两天因为工作的原因需要将贝塞尔曲线加在工程中,那么MOMO迅速的研究了一下成果就分享给大家了哦.贝塞尔曲线的原理是由两个点构成的任意角度的曲线,这两个点一个是 ...
- NGUI研究之在Unity中使用贝塞尔曲线
鼎鼎大名的贝塞尔曲线相信大家都耳熟能详.这两天由于工作的原因须要将贝塞尔曲线加在project中.那么我迅速的研究了一下成果就分享给大家了哦.贝塞尔曲线的原理是由两个点构成的随意角度的曲线,这两个点一 ...
- JS模拟CSS3动画-贝塞尔曲线
一.什么是贝塞尔曲线 1962年,法国工程师皮埃尔·贝塞尔(Pierre Bézier),贝塞尔曲线来为为解决汽车的主体的设计问题而发明了贝塞尔曲线.如今,贝赛尔曲线是计算机图形学中相当重要的一种曲线 ...
- Android 贝塞尔曲线解析
相信很多同学都知道"贝塞尔曲线"这个词,我们在很多地方都能经常看到.利用"贝塞尔曲线"可以做出很多好看的UI效果,本篇博客就让我们一起学习"贝塞尔曲线 ...
- CSS总结六:动画(一)ransition:过渡、animation:动画、贝塞尔曲线、step值的应用
transition-property transition-duration transition-timing-function transition-delay animation-name a ...
- WPF贝塞尔曲线示例
WPF贝塞尔曲线示例 贝塞尔曲线在之前使用SVG的时候其实就已经有接触到了,但应用未深,了解的不是很多,最近在进行图形操作的时候需要用到贝塞尔曲线,所以又重新来了解WPF中贝塞尔曲线的绘制. 一阶贝塞 ...
- 关于photoshop钢笔工具中各点对应到“贝塞尔曲线”中的含义(cocos2d-x与iOS)
1.程序中贝塞尔曲线的简单介绍,只介绍曲线部分.程序中的贝塞尔曲线需要四个点:起始点(startPoint) ,控制点1(controlPoint1),控制点2(controlPoint2),结束点( ...
- 基于CAShapeLayer和贝塞尔曲线的圆形进度条动画
通过CAShapeLayer和贝塞尔曲线搭配的方法,创建的简单的圆形进度条的教程先简单的介绍下CAShapeLayer1,CAShapeLayer继承自CALayer,可使用CALayer的所有属性2 ...
随机推荐
- C#生成6位随机验证码
private string VerifyCode() { Random random = new Random(); , ).ToString(); }
- html中的span有value属性么(可以作为自定义属性在jquery中用)
html中的span有value属性么(可以作为自定义属性在jquery中用) 一.总结 可以作为自定义属性在jquery中用 二.html中的span有value属性么 value并不是span标签 ...
- php实现字符串的排列(交换)(递归考虑所有情况)
php实现字符串的排列(交换)(递归考虑所有情况) 一.总结 交换: 当有abc的时候,分别拿第一位和其它位交换,第一位固定,余下的位做递归,这样有考虑到所有情况,因为第一位只可能是所有的字母,那第一 ...
- Django会话cookie&session
任务描述:实现登录和退出 1.项目结构 2.源代码 urls.py from django.conf.urls import url from django.contrib import admin ...
- Effective C++ 条款14
在资源管理器中小心copying行为 上节是对资源的管理说明.有时候我们不能依赖于shared_ptr或者auto_ptr,所以我们须要自己建立一个资源管理类来管理自己的资源. 比如建立一个类来管理M ...
- oracle中imp导入数据中文乱码问题(转)
(转自 http://blog.chinaunix.net/uid-186064-id-2823338.html) oracle中imp导入数据中文乱码问题 用imp命令向oracle中导入数据后, ...
- sparksql json 合并json数据
java public class Demo { private static SparkConf conf = new SparkConf().setAppName("demo" ...
- TensorFlow 学习(四)—— computation graph
TensorFlow 的计算需要事先定义一个 computation graph(计算图),该图是一个抽象的结构,只有在评估(evaluate)时,才有数值解,这点和 numpy 不同.这张图由一组节 ...
- android studio报错提示: Gradle DSL method not found: 'android() 解决方案
原文错误提示: Error:(16, 0) Gradle DSL method not found: 'Android()'Possible causes:<ul><li>Th ...
- 关于JDBC连接数据库时出现的Public Key Retrieval is not allowed错误
问题描述 最近在学习MyBatis框架,参考官方的文档通过配置文件的方式已经实现了通过Configuration配置文件和mapper映射文件访问mysql8数据库,于是想试试不使用XML文件去构建S ...