个人原创。欢迎转载,转载请注明原文地址http://blog.csdn.net/bill_man

从本篇文章開始,将分析cocos2D-X 3.0源码,第一部分是从cocos2D-X学习OpenGL,也就是分析cocos2D-X 3.0的渲染代码,本篇首先介绍cocos2D-X 3.0的渲染结构。使用的是3.0正式版。

void DisplayLinkDirector::mainLoop()
{
if (_purgeDirectorInNextLoop)
{
//仅仅有一种情况会调用到这里来,就是导演类调用end函数
_purgeDirectorInNextLoop = false;
//清除导演类
purgeDirector();
}
else if (! _invalid)
{
//绘制
drawScene();
//清除内存
PoolManager::getInstance()->getCurrentPool()->clear();
}
}

分析的起点是mainLoop函数。这是在主线程里面会调用的循环,当中drawScene函数进行绘制。那么就进一步来看drawScene函数。

void Director::drawScene()
{
//计算间隔时间
calculateDeltaTime(); //假设间隔时间过小会被忽略
if(_deltaTime < FLT_EPSILON)
{
return;
}
//空函数,或许之后会有作用
if (_openGLView)
{
_openGLView->pollInputEvents();
} //非暂停状态
if (! _paused)
{
_scheduler->update(_deltaTime);
_eventDispatcher->dispatchEvent(_eventAfterUpdate);
} glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); //切换下一场景。必须放在逻辑后绘制前,否则会出bug
if (_nextScene)
{
setNextScene();
} kmGLPushMatrix();
//创建单位矩阵
kmMat4 identity;
kmMat4Identity(&identity); //绘制场景
if (_runningScene)
{
_runningScene->visit(_renderer, identity, false);
_eventDispatcher->dispatchEvent(_eventAfterVisit);
} //绘制观察节点,假设你须要在场景中设立观察节点,请调用摄像机的setNotificationNode函数
if (_notificationNode)
{
_notificationNode->visit(_renderer, identity, false);
}
//绘制屏幕左下角的状态
if (_displayStats)
{
showStats();
}
//渲染
_renderer->render();
//渲染后
_eventDispatcher->dispatchEvent(_eventAfterDraw); kmGLPopMatrix(); _totalFrames++; if (_openGLView)
{
_openGLView->swapBuffers();
}
//计算绘制时间
if (_displayStats)
{
calculateMPF();
}
}

当中和绘制相关的是visit的调用和render的调用,当中visit函数会调用节点的draw函数。在3.0之前的版本号中draw函数就会直接调用绘制代码。3.0版本号是在draw函数中将绘制命令存入到renderer中,然后renderer函数去进行真正的绘制。首先来看sprite的draw函数。

void Sprite::draw(Renderer *renderer, const kmMat4 &transform, bool transformUpdated)
{
//检查是否超出边界,自己主动裁剪
_insideBounds = transformUpdated ? renderer->checkVisibility(transform, _contentSize) : _insideBounds; if(_insideBounds)
{
//初始化
_quadCommand.init(_globalZOrder, _texture->getName(), _shaderProgram, _blendFunc, &_quad, 1, transform);
renderer->addCommand(&_quadCommand);
//物理引擎相关绘制边界
#if CC_SPRITE_DEBUG_DRAW
_customDebugDrawCommand.init(_globalZOrder);
//自己定义函数
_customDebugDrawCommand.func = CC_CALLBACK_0(Sprite::drawDebugData, this);
renderer->addCommand(&_customDebugDrawCommand);
#endif
}
}

这里面用了两种不同的绘制命令quadCommand初始化后就能够加入到绘制命令中,customDebugDrawCommand传入了一个回调函数,具体的命令种类会在后面介绍。当中自己定义的customDebugDrawCommand命令在初始化的时候仅仅传入了全局z轴坐标,由于它的绘制函数全部都在传入的回调函数里面。_quadCommand则须要传入全局z轴坐标,贴图名称,shader,混合,坐标点集合,坐标点集个数,变换。

void Renderer::render()
{
_isRendering = true; if (_glViewAssigned)
{
//清除
_drawnBatches = _drawnVertices = 0; //排序
for (auto &renderqueue : _renderGroups)
{
renderqueue.sort();
}
//绘制
visitRenderQueue(_renderGroups[0]);
flush();
}
clean();
_isRendering = false;
}

Render类中的render函数进行真正的绘制,首先排序,再进行绘制。从列表中的第一个组開始绘制。在visitRenderQueue函数中能够看到五种不同类型的绘制命令类型,分别相应五个类,这五个类都继承自RenderCommand。

QUAD_COMMAND:QuadCommand类绘制精灵等。

全部绘制图片的命令都会调用到这里,处理这个类型命令的代码就是绘制贴图的openGL代码,下一篇文章会具体介绍这部分代码。

CUSTOM_COMMAND:CustomCommand类自己定义绘制。自己定义绘制函数,在调用绘制时仅仅需调用已经传进来的回调函数就能够,裁剪节点。绘制图形节点都採用这个绘制,把绘制函数定义在自己的类里。

这样的类型的绘制命令不会在处理命令的时候调用不论什么一句openGL代码。而是调用你写好并设置给func的绘制函数,兴许文章会介绍引擎中的全部自己定义绘制,并自己实现一个自己定义的绘制。

BATCH_COMMAND:BatchCommand类批处理绘制,批处理精灵和粒子

事实上它相似于自己定义绘制,也不会再render函数中出现不论什么一句openGL函数,它调用一个固定的函数,这个函数会在下一篇文章中介绍。

GROUP_COMMAND:GroupCommand类绘制组,一个节点包含两个以上绘制命令的时候,把这个绘制命令存储到另外一个_renderGroups中的元素中,并把这个元素的指针作为一个节点存储到_renderGroups[0]中。

整个GROUP_COMMAND的原理须要从addCommand讲起。

void Renderer::addCommand(RenderCommand* command)
{
//获得栈顶的索引
int renderQueue =_commandGroupStack.top();
//调用真正的addCommand
addCommand(command, renderQueue);
} void Renderer::addCommand(RenderCommand* command, int renderQueue)
{
CCASSERT(!_isRendering, "Cannot add command while rendering");
CCASSERT(renderQueue >=0, "Invalid render queue");
CCASSERT(command->getType() != RenderCommand::Type::UNKNOWN_COMMAND, "Invalid Command Type");
//将命令加入到数组中
_renderGroups[renderQueue].push_back(command);
}

addCommand有“真假”两个,差点儿全部加入渲染命令的地方,调用的都是第一个“假” addCommand,它实际上不是真正的把命令加入到_renderGroups中。它是获得须要把命令加入到_renderGroups位置中的索引。这个索引是从_commandGroupStack获得的,_commandGroupStack是个栈,当我们创建一个GROUP_COMMAND时,须要调用pushGroup函数。它是把当前这个命令在_renderGroups的索引位置压到栈顶。当addCommand时,调用top,获得这个位置

_groupCommand.init(_globalZOrder);

renderer->addCommand(&_groupCommand);

renderer->pushGroup(_groupCommand.getRenderQueueID());

GROUP_COMMAND一般用于绘制的节点有一个以上的绘制命令。把这些命令组织在一起,无需排定它们之间的顺序,他们作为一个总体被调用,所以一定要记住,栈是push,pop相应的,关于这个节点的全部的绘制命令被加入完毕后,请调用pop。将这个值从栈顶弹出,否则后面的命令也会被加入到这里。

接下来就能够解释为什么调用的起始仅仅需调用

visitRenderQueue(_renderGroups[0]);。为什么仅仅是0,其它的呢?

它们会在处理GROUP_COMMAND被调用

else if(RenderCommand::Type::GROUP_COMMAND == commandType) {
flush();
int renderQueueID = ((GroupCommand*) command)->getRenderQueueID();
visitRenderQueue(_renderGroups[renderQueueID]);
}

如有错误,欢迎指出

下一篇介绍贴图和批处理的openGL代码部分

同一时候推荐子龙山人的openGL相关博客:http://4gamers.cn/archives/category/opengl-es-2-0

版权声明:本文博客原创文章。博客,未经同意,不得转载。

cocos2D-X从的源代码的分析cocos2D-X学习OpenGL(1)----cocos2D-X渲染架构的更多相关文章

  1. Ffmpeg解析media容器过程/ ffmpeg 源代码简单分析 : av_read_frame()

    ffmpeg 源代码简单分析 : av_read_frame() http://blog.csdn.net/leixiaohua1020/article/details/12678577 ffmpeg ...

  2. C C++源代码安全分析工具调研

    C C++源代码安全分析工具调研:http://blog.csdn.net/testing_is_believing/article/details/22047107

  3. Linux内核源代码情景分析系列

    http://blog.sina.com.cn/s/blog_6b94d5680101vfqv.html Linux内核源代码情景分析---第五章 文件系统  5.1 概述 构成一个操作系统最重要的就 ...

  4. 《Android系统源代码情景分析》连载回忆录:灵感之源

    上个月,在花了一年半时间之后,写了55篇文章,分析完成了Chromium在Android上的实现,以及Android基于Chromium实现的WebView.学到了很多东西,不过也挺累的,平均不到两个 ...

  5. FFmpeg的HEVC解码器源代码简单分析:环路滤波(Loop Filter)

    ===================================================== HEVC源代码分析文章列表: [解码 -libavcodec HEVC 解码器] FFmpe ...

  6. FFmpeg的HEVC解码器源代码简单分析:CTU解码(CTU Decode)部分-TU

    ===================================================== HEVC源代码分析文章列表: [解码 -libavcodec HEVC 解码器] FFmpe ...

  7. FFmpeg的HEVC解码器源代码简单分析:CTU解码(CTU Decode)部分-PU

    ===================================================== HEVC源代码分析文章列表: [解码 -libavcodec HEVC 解码器] FFmpe ...

  8. FFmpeg的HEVC解码器源代码简单分析:解码器主干部分

    ===================================================== HEVC源代码分析文章列表: [解码 -libavcodec HEVC 解码器] FFmpe ...

  9. FFmpeg的HEVC解码器源代码简单分析:解析器(Parser)部分

    ===================================================== HEVC源代码分析文章列表: [解码 -libavcodec HEVC 解码器] FFmpe ...

  10. FFmpeg的HEVC解码器源代码简单分析:概述

    ===================================================== HEVC源代码分析文章列表: [解码 -libavcodec HEVC 解码器] FFmpe ...

随机推荐

  1. [React] Cleanly Map Over A Stateless Functional Component with a Higher Order Component

    In this lesson we'll create a Higher Order Component (HOC) that takes care of the key property that ...

  2. Android SqlDelight具体解释和Demo样例

    一.简单介绍 SQLDelight 和 SqlBrite 是 Square 公司推出的一个 Android 平台数据库解决方式. 在了解这个两个东西前,必须先得有Andorid的Sqlite的知识(S ...

  3. [Angular] Ngrx/effects, Action trigger another action

    @Injectable() export class LoadUserThreadsEffectService { constructor(private action$: Actions, priv ...

  4. 基于 Android NDK 的学习之旅-----序言

    前些日子做了个Android项目, 引擎层 用C的, 准备写这个系类的文章,借此跟朋友来分享下我NDK开放的经验以及自己知识的总结和备忘.希望能给需要这方面资料的朋友提供一定的帮助. 主要涉及到:   ...

  5. C# 关于反射事件

    在frmMain类中的代码 private void StartRun(string tag, string date, bool tipType)        {            var d ...

  6. 【U205】最大值

    Time Limit: 1 second Memory Limit: 128 MB [问题描述] 找到一个数组的最大值的一种方法是从数组开头从前到后对数组进行扫描,令max=a[0](数组下表从0.. ...

  7. [Node.js] Identify memory leaks with nodejs-dashboard

    In this lesson, I introduce a memory leak into our node.js application and show you how to identify ...

  8. log4j配置参考手册:log4j.properties和log4j.xml两种格式

    log4j是Java Web开发中,最常用的日志组件之一.网上关于log4j的配置满天飞,我主要是从网上学习的配置.之前的很多年,主要使用log4j.properties这种格式.后来,项目中boss ...

  9. PatentTips - Heterogeneous Parallel Primitives Programming Model

    BACKGROUND 1. Field of the Invention The present invention relates generally to a programming model ...

  10. iOS 利用FZEasyFile本地保存 和 常规保存

    1.常规保存(较麻烦) NSFileManager *fileManager = [NSFileManager defaultManager]; //获取document路径,括号中属性为当前应用程序 ...