题目大意

  给出一个有$n(n\leq 500)$个节点的无向图,一个满足条件的点集$V$会使得对于图中的每一个节点$u$,满足路径起点为$u$终点$v\in V$的路径集合$P_u$中总存在至少两条路径$p_1,p_2$,使得该两条路径除了起点外没有交集(终点也不同)。输出$|V|$的最小值,以及$|V|$最小时$V$的种类数。

题解

  对于一个点双连通分量中的任意一对点都有两条路径到达对方,所以我们从点双连通分量入手。

  特殊情况:当一个点双连通分量中没有割点时,根据题目要求,这个点双连通分量中需要有两个点属于$V$。

  若把所有点双连通分量缩点形成一棵树,那么树必定会有叶子节点。所以我们考虑当一个点双连通分量有一个割点时该怎么办。考虑到去掉的点是割点的情况,每个叶子双联通分量内必需有一个点$t$属于$V$;若去掉的点位于所在连通分量以外的部分,双连通分量内的点都与$t$连通;若去掉的点在双连通分量以内且不属于割点,那么双连通分量内的其它点到割点必然存在一条路径,而割点必然与其它叶子双连通分量相连通,那里有属于$V$的点。因此,所有叶子双连通分量内必须有且只有一个点属于$V$。

  若一个点双连通分量不是叶子,那么无论去掉哪个点,这个点双连通分量总与叶子连通,那里有属于$V$的点,所以这里的点双连通分量没有属于$V$的点。

  关于根节点的特判,将根节点所在的点双连通分量记录下来,在Dfs外面对根节点进行特殊处理即可。

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <stack>
#include <cassert>
using namespace std; const int MAX_NODE = 510; struct Node
{
vector<Node*> Next;
int DfsN, Low;
bool IsCut;
}_nodes[MAX_NODE];
stack<Node*> St; struct Block
{
int NodeCnt, CutCnt;
}_blocks[MAX_NODE];
int BlockCnt;
int DfsCnt;
vector<Block*> RootIn; void DeStack(Node *end, Node *add)
{
BlockCnt++;
Node *temp;
do {
temp = St.top();
St.pop();
_blocks[BlockCnt].NodeCnt++;
_blocks[BlockCnt].CutCnt += temp->IsCut;
} while (temp != end);
_blocks[BlockCnt].NodeCnt++;
_blocks[BlockCnt].CutCnt += add->IsCut;
} int Dfs(Node *cur)
{
cur->Low = cur->DfsN = ++DfsCnt;
St.push(cur);
int cnt = 0;
for (int i = 0; i < cur->Next.size(); i++)
{
if (!cur->Next[i]->DfsN)
{
Dfs(cur->Next[i]);
cur->Low = min(cur->Low, cur->Next[i]->Low);
if (cur->Next[i]->Low >= cur->DfsN)
{
cnt++;
if (cur != _nodes + 1)
cur->IsCut = true;
DeStack(cur->Next[i], cur);
if (cur == _nodes + 1)
RootIn.push_back(_blocks + BlockCnt);
}
}
else
cur->Low = min(cur->Low, cur->Next[i]->DfsN);
}
return cnt;
} void Clear()
{
for (int i = 1; i < MAX_NODE; i++)
{
_nodes[i].Low = _nodes[i].DfsN = _nodes[i].IsCut = 0;
_nodes[i].Next.clear();
_blocks[i].CutCnt = _blocks[i].NodeCnt = 0;
}
RootIn.clear();
BlockCnt = 0;
DfsCnt = 0;
} int main()
{
int totEdge, caseCnt = 0;
while (scanf("%d", &totEdge) && totEdge)
{
Clear();
for (int i = 1; i <= totEdge; i++)
{
int u, v;
scanf("%d%d", &u, &v);
_nodes[u].Next.push_back(_nodes + v);
_nodes[v].Next.push_back(_nodes + u);
}
int rootBlockCnt = Dfs(_nodes + 1);
if (rootBlockCnt > 1)
{
_nodes[1].IsCut = true;
for (int i = 0; i < RootIn.size(); i++)
RootIn[i]->CutCnt++;
}
while (!St.empty())
St.pop();
int exitCnt = 0;
long long solCnt = 1;
for (int i = 1; i <= BlockCnt; i++)
{
if (_blocks[i].CutCnt == 0)
{
assert(BlockCnt == 1);
exitCnt = 2;
solCnt = (long long)_blocks[i].NodeCnt * (_blocks[i].NodeCnt - 1) / 2;
}
else if (_blocks[i].CutCnt == 1)
{
exitCnt++;
solCnt *= (_blocks[i].NodeCnt - _blocks[i].CutCnt);
}
}
printf("Case %d: %d %lld\n", ++caseCnt, exitCnt, solCnt);
}
return 0;
}

  

luogu3225 [HNOI2012]矿场搭建的更多相关文章

  1. bzoj2730 [HNOI2012]矿场搭建 (UVAlive5135 Mining Your Own Business)

    2730: [HNOI2012]矿场搭建 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1147  Solved: 528[Submit][Statu ...

  2. BZOJ 2730: [HNOI2012]矿场搭建( tarjan )

    先tarjan求出割点.. 割点把图分成了几个双连通分量..只需dfs找出即可. 然后一个bcc有>2个割点, 那么这个bcc就不用建了, 因为一定可以走到其他救援出口. 只有一个割点的bcc就 ...

  3. 洛谷 P3225 [HNOI2012]矿场搭建 解题报告

    P3225 [HNOI2012]矿场搭建 题目描述 煤矿工地可以看成是由隧道连接挖煤点组成的无向图.为安全起见,希望在工地发生事故时所有挖煤点的工人都能有一条出路逃到救援出口处.于是矿主决定在某些挖煤 ...

  4. 【BZOJ】2730: [HNOI2012]矿场搭建【Tarjan找割点】【分联通块割点个数】

    2730: [HNOI2012]矿场搭建 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3230  Solved: 1540[Submit][Stat ...

  5. Tarjan 点双+割点+DFS【洛谷P3225】 [HNOI2012]矿场搭建

    P3225 [HNOI2012]矿场搭建 题目描述 煤矿工地可以看成是由隧道连接挖煤点组成的无向图.为安全起见,希望在工地发生事故时所有挖煤点的工人都能有一条出路逃到救援出口处.于是矿主决定在某些挖煤 ...

  6. [luoguP3325][HNOI2012]矿场搭建

    P3225 [HNOI2012]矿场搭建 题目描述 煤矿工地可以看成是由隧道连接挖煤点组成的无向图.为安全起见,希望在工地发生事故时所有挖煤点的工人都能有一条出路逃到救援出口处.于是矿主决定在某些挖煤 ...

  7. [BZOJ2730][HNOI2012]矿场搭建 点双 割点

    2730: [HNOI2012]矿场搭建 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2852  Solved: 1344[Submit][Stat ...

  8. 【BZOJ2730】[HNOI2012]矿场搭建 Tarjan

    [BZOJ2730][HNOI2012]矿场搭建 Description 煤矿工地可以看成是由隧道连接挖煤点组成的无向图.为安全起见,希望在工地发生事故时所有挖煤点的工人都能有一条出路逃到救援出口处. ...

  9. BZOJ 2730:[HNOI2012]矿场搭建(割点+连通块)

    [HNOI2012]矿场搭建 Description 煤矿工地可以看成是由隧道连接挖煤点组成的无向图.为安全起见,希望在工地发生事故时所有挖煤点的工人都能有一条出路逃到救援出口处.于是矿主决定在某些挖 ...

随机推荐

  1. python--9、并发之多进程应用

    multiprocessing模块 想要充分地使用多核CPU的资源(os.cpu_count()查看),在python中大部分情况需要使用多进程.Python提供了multiprocessing.  ...

  2. fcc 响应式框架Bootstrap 练习3

    class="container-fluid"控制宽度100% <div class="container-fluid"> <h3 class ...

  3. Android集成二维码扫描功能

    文章转载自  https://github.com/yipianfengye/android-zxingLibrary 在具体介绍该扫描库之前我们先看一下其具体的使用方式,看看是不是几行代码就可以集成 ...

  4. Hive扩展功能(六)--HPL/SQL(可使用存储过程)

    软件环境: linux系统: CentOS6.7 Hadoop版本: 2.6.5 zookeeper版本: 3.4.8 主机配置: 一共m1, m2, m3这五部机, 每部主机的用户名都为centos ...

  5. lamlmzhang的新博客开通了,欢迎大家的关注

    从这里开始lamlmzhang的java开发之路~!

  6. Java中内部类详解—匿名内部类

    什么是内部类? 将一个类A定义在另一个类B里面,里面的那个类A就称为内部类,B则称为外部类.   成员内部类 定义在类中方法外的类. 定义格式: class 外部类 { class 内部类{ } } ...

  7. unzip 命令巧用举例

    1.把文件解压到当前目录下 unzip master.zip 2.如果要把文件解压到指定的目录下,需要用到-d参数. unzip -d /tmp master.zip 3.解压的时候,有时候不想覆盖已 ...

  8. .net 学习视频

    http://www.iqiyi.com/a_19rrh9jx9p.html http://www.cnblogs.com/aarond/p/SQLDispatcher.html  --读写分离 ht ...

  9. Python2 下Ubuntu linux Mac 安装 PyV8

    在pip install PyV8(注意区分大小写)时,出现了如下报错 command 'x86_64-linux-gnu-gcc' failed with exit status 1 解决方案: 百 ...

  10. 6.3.4 使用marshal 模块操作二进制文件

    Python 标准库 marshal 也可以进行对象的序列化和反序列化,下面的代码进行了简单演示. import marshal x1 = 30 x2 = 5.0 x3 = [1,2,3] x4 = ...